Бинарная алгебраическая операция
Теоретические аспекты понятия арифметической операции. Краткая характеристика свойств ассоциативности, коммутативности и свойства наличия обратного элемента. Закон сокращения и простейшие свойства алгебраических систем, определение группы и подгруппы.
Подобные документы
Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.
курсовая работа, добавлен 29.06.2014Теория частичных алгебраических действий. Частично упорядоченные множества. Частичные группоиды и их свойства. Примеры полурешеток. Доказательство ассоциативности. Понятие упорядоченного множества и порядкового типа. Алгебраическая теория полугрупп.
курсовая работа, добавлен 24.03.2012Исследование особенностей обозначения числовых матриц. Линейные операции над ними. Характеристика основ коммутативного закона умножения. Аспекты проверки свойства ассоциативности. Рассмотрение основных функций вырожденных и невырожденных матриц.
реферат, добавлен 19.06.2015Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.
методичка, добавлен 29.12.2015Определение моды в статистике. Поиск порядкового номера медианы. Свойства средней арифметической величины. Аналитические операции с медианой. Варианты, которые повторяются разное число раз. Соотношения между средней арифметической, медианой и модой.
презентация, добавлен 18.11.2015Понятие алгебраической операции, ее характеристики и свойства, отличительные признаки и направления исследования. Свойства и изоморфизм групп. Реализация абстрактной группы как группы преобразований. Теорема о подгруппах конечной циклической группы.
реферат, добавлен 18.06.2015Теоретические аспекты понятия разности двух множеств как теоретико-множественной операции в математике, особенности пустого множества. Основные свойства разности множеств и сущность законов де Моргана. Реализация операции с помощью компьютерных программ.
реферат, добавлен 18.02.2012Подгруппы и факторгруппы групп с операторами. Теоремы о гомоморфизмах. Содержание и принципы реализации теорем Шура – Цассенхауза и Фейта – Томпсона. Понятие и содержание, свойства обобщенной подгруппы Фраттини. Расширения посредством автоморфизмов.
курсовая работа, добавлен 08.01.2013Анализ понятия матрицы: классификация и основные операции над ними. Определители квадратной матрицы и их свойства. Теоремы Лапласа и аннулирования. Обратная матрица: определение понятий, ее единственность, а также алгоритм ее построения и свойства.
курсовая работа, добавлен 21.04.2011Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.
методичка, добавлен 05.05.2014Понятие абстрактной группы. Свойства алгебраических операций. Реализация абстрактной группы как группы преобразований. Доказательство теоремы Коши, Лагранжа. Теорема о подгруппах конечной циклической группы. Смежные классы, классы сопряженных элементов.
реферат, добавлен 24.06.2010Определение термина "матрица", основные действия с ней и ее виды. Элементарные преобразования, транспонирование матриц и операции умножения (дистрибутивная) и перемножения (ассоциативная) с ними. Формирование из алгебраических дополнений каждого элемента.
контрольная работа, добавлен 13.01.2015Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.
курс лекций, добавлен 05.01.2016- 14. Метод Гаусса
Решение систем линейных алгебраических уравнений методом Гаусса. Схема единственного деления. Необходимость выбора главного элемента по столбцу. Исключение неизвестного из уравнений на этапе обратного хода. Коэффициенты системы уравнений по Гауссу.
доклад, добавлен 18.09.2013 Рассматривается задача решения разреженных положительно определенных систем линейных алгебраических уравнений с медленно меняющимися коэффициентами. Приведены условия локальной и глобальной сходимости алгоритма. Обсуждаются его основные свойства.
статья, добавлен 26.04.2019- 16. Понятие вектора
Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.
лекция, добавлен 23.12.2013 Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.
реферат, добавлен 19.07.2010Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.
контрольная работа, добавлен 16.06.2010Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.
реферат, добавлен 30.10.2010Основные свойства машины Тьюринга, отличающие ее от исполнителя – человека. Понятие конфигураций машины Тьюринга. Основные свойства операции композиции. Примеры вычислимых функций по Тьюрингу. Операция ветвления и зацикливания, их ключевые особенности.
презентация, добавлен 21.10.2019- 21. Свойства функций
Характеристики алгебраических функций: монотонность, непрерывность, четность, выпуклость, ограниченность, наибольшее и наименьшее значение. Алгоритм описания свойств функций. Рассмотрение, графическое представление и описание свойств некоторых функций.
презентация, добавлен 17.12.2014 Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.
курс лекций, добавлен 17.01.2014Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.
курсовая работа, добавлен 17.03.2014Понятие, виды и формулы расчета обратной, присоединенной и нулевой матриц, определение суммы и произведения, доказательство свойства умножения ее на число, свойства линейных операций. Определители для двух неравных квадратных матриц одинакового размера.
лекция, добавлен 26.01.2014