Обобщение одной классической пары полиномов
Рассмотрение последовательности преобразований, связывающей корни полиномов деления круга с корнями полиномов. Разложение классической пары полиномов в бином Ньютона и группировка членов. Аналогия пар с полиномами Чебышева первого и второго рода.
Подобные документы
Интеграл Эйлера первого рода (бета-функция). Определение Эйлерова интеграла второго рода. Характеристика свойств непрерывности гамма-функции, основного функционального уравнения и формулы дополнения. Установление связи между бета- и гамма-функциями.
курсовая работа, добавлен 18.12.2012Область сходимости ряда. Производные функции четного и нечетного порядка. Подставление найденных величины в ряд Маклорена. Интервал сходимости ряда. Формула бинома Ньютона. Бесконечное разложение и конечная сумма. Определение биномиального ряда.
презентация, добавлен 18.09.2013Выявление статистической значимости и обоснованности; гипотезы и их проверка. Ошибки первого и второго рода в математической статистике. Вероятности ошибок (уровень значимости и мощность), их использование в области компьютеров и программного обеспечения.
реферат, добавлен 30.12.2021Криволинейные интегралы первого рода, их свойства и вычисление. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Связь поверхностных интегралов первого и второго рода. Формула Гаусса-Остроградского и формула Стокса.
контрольная работа, добавлен 20.12.2011Первые оптические эксперименты, одного из создателей классической физики, Исаака Ньютона. Открытие им закона всемирного тяготения. Математические работы. Совместные наработки и спор с Лейбницем. Математические начала натуральной философии Ньютона.
реферат, добавлен 20.05.2013Понятие криволинейного интеграла второго рода, условие его существования. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Механический смысл криволинейного интеграла второго рода, его место в многосвязной области.
курсовая работа, добавлен 27.11.2018- 32. Исследование наилучших приближений непрерывных периодических функций тригонометрическими полиномами
Наилучшие приближения непрерывных периодических функций тригонометрическими полиномами и их исследование. Обобщение теоремы Джексона и обобщение известного неравенства С.Н. Бернштейна для производных от тригонометрического полинома. "Обратные теоремы".
дипломная работа, добавлен 22.04.2011 Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
учебное пособие, добавлен 19.12.2013Понятие вероятности и зарождение науки о закономерности случайных явлений. Достоверное, невозможное и случайное событие как первичное понятие теории вероятностей. Комбинаторные конфигурации, используемые для формулировки и решения комбинаторных задач.
реферат, добавлен 06.01.2015Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.
презентация, добавлен 26.10.2013Решение всякой количественной математической задачи и нахождение "решения" y по заданным исходным данным. Задача решения уравнения Фредгольма первого рода. Устойчивость эквивалентна непрерывности обратного оператора. Нормы всех членов последовательности.
реферат, добавлен 09.11.2017Расчет числа одинарных дуг потоковой последовательности по результатам внедрения зонда. Структура бинарной последовательности. Применение в математике модовой вероятности. Выбор пропорций будущих потоков, на основе анализа длин выпавших событий.
статья, добавлен 03.03.2018- 38. Теория множеств
Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.
реферат, добавлен 19.01.2012 Анализ многочленов Лежандра и Чебышева, преобразования Лапласа. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке, с применением смещенных многочленов Лежандра, смещенных многочленов Чебышева первого рода.
контрольная работа, добавлен 01.12.2020- 40. Квадратные корни
Изучение правил действий с квадратными корнями и способов преобразования выражений с квадратными корнями. Квадратный корень из числа, его вычисление, геометрические приложения и основные тождества. Квадратный корень из произведения, дроби и степени.
реферат, добавлен 06.03.2010 Определение топологического пространства, классическое определение непрерывности числовой функции. Отображения для любой пары произвольных множеств. Окрестностью точки в топологическом пространстве, предел последовательности точек, топология Зарисского.
контрольная работа, добавлен 10.11.2010Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.
конспект урока, добавлен 03.02.2018Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.
статья, добавлен 04.05.2012Рассмотрение определения монотонных и немонотонных последовательностей. Использование формулы бинома Ньютона в расчете предела числа е. Подпоследовательности и их свойства. Изучение доказательства теоремы Больцано-Вейерштрасса в математическом анализе.
презентация, добавлен 16.10.2014Определение многочленов Чебышева, их краткая характеристика и особенности. Рассмотрение случая произвольного отрезка. Описание дифференциального уравнения многочленов и квадратурной формулы, сравнение их погрешностей. Общее понятие термина алгоритм.
курсовая работа, добавлен 14.04.2014Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.
контрольная работа, добавлен 03.06.2012Методы решения линейных систем уравнений. Приведение системы к треугольному виду последовательным обнулением поддиагональных элементов первого и второго столбца как цель прямого хода преобразований в методе вращений. Особенности хода преобразований.
контрольная работа, добавлен 18.11.2013Изучение особенностей операций над множествами. Характеристика метода математической индукции. Рассмотрение аспектов применения бинома Ньютона. Анализ способ решения примером с комплексными числами и пределами. Методы вычисления производной и интеграла.
учебное пособие, добавлен 08.11.2013Численно-аналитическое моделирование процессов теплопроводности. Рассмотрение несимметричных граничных условий первого и второго рода. Методика аппроксимационного преобразования уравнений в частных производных к системе дифференциальных уравнений.
статья, добавлен 25.08.2016Собственные и несобственные интегралы, зависящие от параметра. Признаки, свойства и вычисление двойного интеграла в случае прямоугольной и криволинейной области. Определение интеграла Эйлера первого рода (Бета-функция) и второго рода (Гамма-функция).
учебное пособие, добавлен 28.12.2013