Быстрое введение в тензорный анализ
Связанные векторы и свободные векторы. Скалярное произведение ковектора. Умножение на числа и сложение тензоров. Поднятие и опускание индексов. Тензорные поля в декартовых координатах. Градиент, дивергенция и ротор. Главная идея криволинейных координат.
Подобные документы
История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.
реферат, добавлен 29.08.2014Построение вектора, перпендикулярного двум имеющимся. Обзор правых и левых троек векторов в трёхмерном пространстве. Отличие векторного произведения от скалярного. Изучение его геометрических и алгебраических свойств. Выражения для декартовых координат.
реферат, добавлен 14.01.2015Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.
контрольная работа, добавлен 02.12.2013Действия с линейными операторами. Произведение оператора на число. Результат последовательного применения на вектор-прообраз х в пространстве Х. Изучение характеристического многочлена матрицы. Собственные векторы и числа, системы линейных уравнений.
лекция, добавлен 26.11.2013Определение понятия "комплексные числа", их алгебраическая форма, вычисления суммы и произведения, основные этапы изучения. Тригонометрическая форма комплексного числа, его геометрическая модель. Основные действия: сложение, вычитание, умножение, деление.
презентация, добавлен 26.02.2015- 31. Тензорный анализ
Тензор - объект линейной алгебры, преобразующий элементы пространства. Создание абстрактных моделей в математических терминах. Произведение длин векторов и косинуса угла. Понятия скаляра, вектора и матрицы. Тензорный анализ и дифференциальная геометрия.
реферат, добавлен 25.02.2021 Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.
презентация, добавлен 18.12.2017Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.
курсовая работа, добавлен 26.12.2011Признак коллинеарности векторов, их абсолютная длинна и скалярное произведение. Сумма векторов, правило треугольника, параллелограмма, многоугольника, параллелепипеда Смешанные произведения в координатах. Проекции вектора на ось. Координатные формулы.
реферат, добавлен 28.02.2011Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.
курсовая работа, добавлен 26.02.2013Параллельность и перпендикулярность прямых и плоскостей. Свойства многогранников, их основные виды. Нахождение площади призмы, параллелепипеда, пирамиды, трапеции и ромба, их высоты и сторон, боковых ребер и граней. Векторы в пространстве, их сложение.
учебное пособие, добавлен 01.04.2013История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.
лекция, добавлен 29.09.2013- 39. Теория вектора
Характеристика вектора, как семейства параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков. Сложение и равенство векторов, свойства операций над ними, скалярное произведение двух векторов. Доказательства и решения задач.
контрольная работа, добавлен 26.10.2009 Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.
курсовая работа, добавлен 24.03.2009- 41. Понятие тензора
Тензор как объект линейной алгебры. Общее определение тензора. Анализ тензоров первого и второго ранга, тензоров напряжения. Риманова метрика. Линейные операторы на векторах. Тензоры типа (0, k). Требования к ковариантному дифференцированию тензоров.
контрольная работа, добавлен 01.09.2017 Рассмотрение функций частных производных. Двойной интеграл в криволинейных координатах. Переход от декартовой системы оси к оси на плоскости. Изучение понятий, свойств и полярных координат двойного и тройного интеграла. Положение точек в пространстве.
лекция, добавлен 17.01.2014- 43. Блочные матрицы
Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".
курсовая работа, добавлен 18.05.2013 Сравнение по ненулевому модулю третьего натурального числа. Характеристика главных особенностей деления числа на множество указанных чисел (дробных или целых). Сложение и умножение чисел. Отношение эквивалентности. Основные классы сравнения чисел.
статья, добавлен 03.03.2018Доказательство того, что нулевая особая точка конечномерного векторного поля с вырожденной производной Фреше ранга r=n-1 является изолированной, если на лучах вырождения линейной части поля векторы квадратичной части не лежат в гиперплоскости.
статья, добавлен 26.04.2019Множество как основное понятие математики: пересечение, разность, разбиение и произведение. Простые и составные высказывания. Структура и виды теоремы. Сложение и вычитание, умножение и деление в количественной теории целых неотрицательных чисел.
шпаргалка, добавлен 19.01.2011Задача о вычислении объема при помощи двойного интеграла. Примеры вычислений двойного интеграла в декартовых координатах и в полярной системе. Тройной интеграл в цилиндрической системе координат: нахождение объема тела, ограниченного параболоидами.
презентация, добавлен 26.09.2017Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
курс лекций, добавлен 10.09.2016Линейные операции с матрицами: сложение и умножение. Замена элементов матрицы на соответствующие алгебраические дополнения с последующим транспонированием. Разложение определителя по его столбцу. Элементы главной диагонали. Поэлементное сложение данных.
лекция, добавлен 29.09.2013Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.
лекция, добавлен 30.11.2010