Линейная алгебра

Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.

Подобные документы

  • Анализ аналитического определения обобщенного скалярного произведения векторов в данном n-мерном (векторном) пространстве. Изучение эквивалентности аналитического и аксиоматического определения скалярного произведения и всех рассматриваемых пространств.

    дипломная работа, добавлен 10.04.2015

  • Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.

    учебное пособие, добавлен 28.12.2013

  • Определение и геометрический смысл смешанного произведения векторов. Формулирование необходимого и достаточного условия их компланарности. Рассмотрение уравнений линии на плоскости и прямой с угловым коэффициентом, векторного и канонического уравнений.

    лекция, добавлен 26.01.2014

  • Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.

    контрольная работа, добавлен 09.02.2015

  • Вычисление определителя матрицы с помощью ее элементарных преобразований. Решение систем линейных уравнений методом Крамера. Алгебраические дополнения транспонированной матрицы. Решение выражений с помощью свойств скалярного, векторного произведений.

    контрольная работа, добавлен 19.01.2014

  • Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.

    учебное пособие, добавлен 23.11.2012

  • Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.

    контрольная работа, добавлен 25.08.2015

  • Задачи на нахождение площадей как наиболее распространённые в геометрии. Задача на нахождение минимума периметра треугольника. Теорема о средних. Частные случаи применения формулы Герона при решении задач на плоскости, равносторонний треугольник, квадрат.

    реферат, добавлен 30.03.2016

  • Понятие направления. Свойства операции сложения векторов. Умножение вектора на число. Линейная зависимость векторов. Координаты вектора. Скалярное произведение векторов. Векторное произведение двух векторов. Смешанное произведение трех векторов.

    методичка, добавлен 17.05.2012

  • Вычисление определителя матрицы разложением. Решение системы уравнений методом Гаусса. Нахождение площади грани и длины высоты пирамиды. Свойства скалярного произведения. Каноническое уравнение высоты пирамиды. Уравнение медианы, опущенной из вершины.

    контрольная работа, добавлен 01.06.2017

  • Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.

    презентация, добавлен 08.04.2018

  • Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.

    лекция, добавлен 29.09.2013

  • Порядок нахождения координат вектора в базисе. Способы решения системы линейных уравнений методом Гаусса, по правилу Крамера и через обратную матрицу. Определение пределов, производных, наибольшего и наименьшего значений функций. Вычисление интегралов.

    контрольная работа, добавлен 01.05.2010

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

  • Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.

    контрольная работа, добавлен 22.08.2014

  • Понятие системы координат в геометрии. Анализ примеров положительного и неположительного скалярного произведения векторов четырехмерного пространства. Псевдоевклидово пространство, особенности его движения. Кривые в псевдоевклидовом пространстве.

    курс лекций, добавлен 01.09.2017

  • Нахождение внутреннего угла треугольника с точностью до градуса, длины высоты, опущенной из вершины, точки пересечения высот и координат векторов. Уравнение медианы, проведенной через вершину. Система линейных неравенств, определяющих треугольник.

    контрольная работа, добавлен 13.06.2016

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Понятие, виды и операции над векторами. Определение положения точки в декартовой системы координат. Отличия векторных от скалярных величин. Свойства смешанного произведения. Решения системы уравнений методом Крамера. Расчёт объема и высоты пирамиды.

    лекция, добавлен 21.09.2017

  • Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.

    презентация, добавлен 21.09.2013

  • Определение координат векторов, которые образуют базис четырехмерного пространства. Нахождение неопределенных интегралов и проверка их дифференцированием. Вычисление площади фигуры, ограниченной графиками функций; абсцессы точек пересечения графиков.

    контрольная работа, добавлен 26.11.2012

  • Методы решения задачи на нахождение минимальной площади сечения пирамиды плоскостью: определение расстояния между двумя скрещивающимися прямыми; минимума функции с помощью производной, поиск площади треугольника векторным произведением двух векторов.

    статья, добавлен 15.07.2021

  • Решение задач по линейной алгебре, тензорному исчислению, системам дифференциальных уравнений и теории устойчивости. Линейная зависимость векторов. Сумма и перечисление подространств. Ортогонализация по Граму-Шмидту. Матрица сопряженного оператора.

    учебное пособие, добавлен 03.10.2012

  • Определение евклидова пространства. Длина вектора и угол между ними. Векторное неравенство Коши-Буняковского. Особенности использования неравенства Коши-Буняковского при решении задач по алгебре. Примеры применения скалярного произведения векторов.

    курсовая работа, добавлен 15.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.