Выбор оптимальной архитектуры искусственной нейронной сети для задачи классификации текстов
Анализ процесса выбора оптимальной архитектуры нейронной сети, которая способна наиболее эффективно определять тональность сообщений на интернет-форумах. Рассмотрение применения искусственных нейронных сетей для решения социально значимых проблем.
Подобные документы
Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.
статья, добавлен 08.03.2019Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.
статья, добавлен 26.04.2017Топологии нейронной сети: биологический нейрон, функции активации, закономерности обучения. Существующие архитектуры и их сравнительная характеристика. Многослойный перцептрон нейронной сети, особенности ее использования для динамических систем.
отчет по практике, добавлен 18.02.2019Структура искусственной нейронной сети и принципы ее работы. Нейросетевая классификация. Создание программы, которая используя технологии нейронных сетей, сможет распознавать рукописные буквы. Центрирование изображения. Пример работы с приложениями.
статья, добавлен 30.05.2013Исследование особенностей применения эволюционных алгоритмов для настройки структуры и поиска весов связей искусственных нейронных сетей. Анализ вопросов эволюционного поиска топологии искусственной нейронной сети. Кодирование информации о весах связей.
статья, добавлен 08.02.2013Характеристика процесса построения простейшей нейронной сети в пакете neuralnet. Анализ алгоритма подготовки данных на примере набора данных iris. Описание процесса обучения нейронной сети. Оценка качества классификации данных полученной нейронной сетью.
статья, добавлен 28.10.2020Методика выбора нейронной сети для решения задач регрессионного анализа многомерных данных. Оценка эффективности выбранной нейросети при решении задачи аппроксимации зашумленных данных. Результаты моделирования прочностных характеристик металла шва.
статья, добавлен 27.05.2018Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.
дипломная работа, добавлен 23.02.2015Анализ предметной области. Технологии классификации текстовых данных. Диаграмма прецедентов системы определения категорий тендеров. Проектирование архитектуры системы определения категорий тендеров. Формирование обучающих выборок для нейронной сети.
дипломная работа, добавлен 28.11.2019Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.
статья, добавлен 12.06.2018Исследование решения задачи автоматического распознавания коридоров набивных стеллажей вилочными погрузчиками с использованием нейронной сети. Описания принципа работы и структуры нейронной сети. Проверка работоспособности построенной нейронной сети.
статья, добавлен 25.02.2019Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017- 14. Нейронные сети
История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.
контрольная работа, добавлен 18.02.2018 Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.
лабораторная работа, добавлен 14.12.2019- 16. Нейронные сети
История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.
реферат, добавлен 05.04.2017 Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Понятия, определения нейронных сетей и классификации изображений. Методы оптимизации работы нейронной сети. Описание интерфейса программной реализации решения задачи классификации изображений. Решение задачи распознания изображений реальных объектов базы.
дипломная работа, добавлен 06.06.2015Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.
статья, добавлен 05.09.2024Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.
статья, добавлен 11.01.2018Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Рассмотрение и характеристика сущности процесса реализации нейронной сети для автономной навигации мобильного робота, используя данные, собранные с ультразвуковых датчиков, которые установлены на его корпусе. Ознакомление с архитектурой нейронной сети.
статья, добавлен 19.02.2019Исследование и анализ результатов сравнения нейронной сети на основе формальных понятий с другими методами классификации данных. Ознакомление с методами классификации данных на реальных датасетах. Характеристика антимононотонности соответствия Галуа.
дипломная работа, добавлен 01.09.2017