Численные методы в нестационарных задачах теории термопластичности

Основные уравнения для решения постановки пространственных нестационарных задач теории термоупругопластичности. Геометрические соотношения и определяющие уравнения, описывающие неизотермические процессы нагружения с учетом траектории деформирования.

Подобные документы

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.

    лекция, добавлен 14.03.2014

  • Уравнения, не содержащие явно неизвестной функции. Линейные дифференциальные равенства второго порядка. Правая часть специального вида. Нахождение решения неоднородного уравнения методом вариации произвольных постоянных. Подбор частного решения.

    реферат, добавлен 29.09.2013

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

  • Расчет сеточной задачи с использованием теорем Куранта (об областях зависимости) и Филлипова (о связи устойчивости, аппроксимации и сходимости). Создание программы на Паскале для решения смешанной задачи для уравнения гиперболического типа методом сеток.

    курсовая работа, добавлен 04.02.2012

  • Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.

    учебное пособие, добавлен 05.05.2015

  • Решение обратной задачи гравиметрии как актуальна задача в современных условиях. Особенности интегрального уравнения Фредгольма первого рода, которое является некорректной задачей. Основные математические аспекты решения двумерной задачи гравиметрии.

    статья, добавлен 30.01.2017

  • Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.

    учебное пособие, добавлен 23.12.2014

  • Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.

    контрольная работа, добавлен 04.12.2011

  • Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.

    лекция, добавлен 06.04.2018

  • Равносильные уравнения, их следствия. Методы решения уравнений, тождественные преобразования над выражениями, входящими в уравнение. Правила преобразования уравнений. Алгоритм метода интервалов, примеры решения. Числовые неравенства, основные свойства.

    реферат, добавлен 22.12.2011

  • Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.

    лабораторная работа, добавлен 16.06.2014

  • Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.

    шпаргалка, добавлен 04.04.2015

  • Ангармонический осциллятор с различной степенью нелинейности: приближенные методы и прямые численные расчеты потенциалов при решении случае уравнения Шредингера с потенциалом четвертой, шестой и восьмой степенями нелинейности программой в среде Maple.

    статья, добавлен 30.09.2012

  • Решение дифференциального уравнения. Изучение поведения интегральных кривых уравнения в случае, когда функция имеет точку бесконечного разрыва. Существование и единственность решения. Теорема Коши-Липшица. Понятие первого интеграла нормальной системы.

    учебное пособие, добавлен 02.05.2014

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

  • Вывод уравнения колебания струны. Формулировка краевых задач, граничные и начальные условия. Волновое уравнение, которое описывает процессы распространения упругих, звуковых, световых, электромагнитных волн, а также другие колебательные явления.

    лекция, добавлен 18.11.2015

  • Задачи вычисления неопределенного и определенного интегралов от функций одной переменной. Дифференциальные уравнения первого и высших порядков. Формирование умения использовать методы математики для решения профессиональных задач. Примеры решения задач.

    учебное пособие, добавлен 19.11.2015

  • Исследование начально-краевой задачи для гиперболического уравнения с нелокальным граничным условием, содержащим интеграл от искомого решения. Нелокальные соотношения, связывающие значение искомого решения в граничных и внутренних точках области.

    статья, добавлен 31.05.2013

  • Cистематизация и обобщение видов уравнений с параметрами и методы их решения. Случаи, когда исходное уравнение не является квадратным. Значения параметра a, для которых все корни уравнения отрицательны. Свойства логарифмов и методы замены переменной.

    курсовая работа, добавлен 30.03.2015

  • Исследование эффективного метода расчета спектра электронных возбуждений молекул в теории функционала плотности на основе уравнения Петерсилки–Госсманна–Гросса. Расчет спектров методом Касиды, последовательных приближений, электронных возбуждений.

    статья, добавлен 31.05.2013

  • Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.

    контрольная работа, добавлен 12.01.2013

  • Получения явных выражений и нелинейных рекуррентных соотношений для решений диофантовых уравнений с помощью алгебраических чисел. Нахождение простого решения диофантова уравнения и уравнения Пелля. Рассмотрение возможности обобщения данного подхода.

    статья, добавлен 07.10.2015

  • Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.

    дипломная работа, добавлен 14.07.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.