Формула Гріна-Остроградського
М.В. Остроградський - один із найбільших вітчизняних вчених XIX ст. Доведення та наслідок формули (теореми) Гріна-Остроградського про перетворення інтеграла. Обчислення за обсягом, обмеженим певною поверхнею, в інтеграл, обчислений по цій поверхні.
Подобные документы
Розуміння змісту теореми, що містить формули доповнення до прямокутних трикутників та наслідку з неї для тангенсу і котангенсу гострого кута. Засвоєння учнями способу обчислення та значень тригонометричних функцій кутів. Приклади усних і письмових вправ.
конспект урока, добавлен 14.09.2018Особливість засвоєння учнями змісту теореми, що виражає властивість бісектриси трикутника та її доведення. Застосування формулювання теореми до розв’язування задач на обчислення відрізків у трикутнику. Дослідження метричних співвідношень в колі.
конспект урока, добавлен 10.09.2018Тригонометричні відношення сторін в трикутнику. Вивчення геометричної теореми Піфагора. Означення і графіки тригонометричних функцій. Формули додавання кутів фігур. Таблиця значень функцій косинусів і синусів. Перетворення добутків нерівностей на суми.
лекция, добавлен 24.01.2014Розгляд нового класу задач математичної фізики з поверхневою і внутрішньою дисипацією енергії та їх абстрактного узагальнення на базі абстрактної формули Гріна. Вивчення властивостей спектру, питань повноти та базисності системи кореневих функцій.
автореферат, добавлен 17.07.2015Зміст поняття та типи трикутників. Властивості рівносторонніх, рівнобедрених і різносторонніх трикутників та загальні властивості, притаманні для усіх видів. Формула Герона для обчислення площі трикутника. Теореми синусів, косинусів та тангенсів.
презентация, добавлен 15.03.2014Пуасонівські міри на просторі конфігурацій над областю. Формули Гауса—Остроградськьго та Гріна. Необхідні та достатні умови симетричності диференціальних операторів другого порядку. Нерівність Пуанкаре для диференціальних операторів другого порядку.
автореферат, добавлен 27.07.2014- 32. Формула Тейлора
Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.
курсовая работа, добавлен 14.12.2015 Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).
презентация, добавлен 21.03.2014Послідовності незалежних випробовувань. Числові характеристики, математичне сподівання та дисперсія випадкових величин. Функції випадкового аргументу, закон її розподілу. Закон великих чисел. Теореми Чебишева та Бернулі. Поняття про теорему Ляпунова.
реферат, добавлен 05.05.2011Особливості еволюції задачі: від теореми Піфагора до Великої теореми Ферма. Значення для науки великого об’єднання в математиці. Творець великої проблеми П. де Ферма: його діяльність, книга "Арифметика", способи доведення теореми про прості числа.
презентация, добавлен 03.01.2016Закріплення знань учнів щодо способів доведення теореми Фалеса. Суть властивостей середньої лінії трикутника та трапеції. Знаходження лінії рівностороннього трикутника. Доведення теореми про діагональ трапеції яка лежить на бісектрисі її гострого кута.
конспект урока, добавлен 04.09.2018Специфіка оберненої, протилежної і оберненої до протилежної теорем, їх виростання в розрахунках, найпростіші схеми правильних міркувань. Характеристика та значення дедуктивного доведення та повної індукції, опис та сутність методу від супротивного.
реферат, добавлен 17.04.2015- 38. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Умови збіжності бакстерівських сум від приростів загального виду гауссових випадкових полів. Теорема Леві-Бакстера для сумісно субгауссового випадкового поля. Симетричний стохастичний інтеграл з диференціалом від випадкового процесу бакстерівського типу.
автореферат, добавлен 27.08.2014 Отримання формули Коші для зображення розв'язків лінійного неоднорідного стохастичного диференціального рівняння з інтегралом Скорохода та її застосування. Аналіз застосування формули Коші для лінійних неоднорідних стохастичних диференціальних рівнянь.
статья, добавлен 04.02.2017- 40. Площа трапеції
Закріплення знання формул для обчислення площі трикутника. Розглядання формули для обчислення площі трапеції. Формування в учнів уміння та навичок застосовувати цю формулу для обчислення площі трапеції. Обчислення висоти трапеції та її середньої лінії.
разработка урока, добавлен 12.09.2018 Біобібліографічні розповіді-дайджести про деяких математиків з України, які внесли значний вклад у світову та європейську науку: Вороного, Кравчука, Остроградського, Глушкова, Зарицького, Левицького, їх особисте життя, наукові відкриття і досягнення.
реферат, добавлен 29.01.2009Означення інтегралу Стілтьєса, його властивості, приклади обчислення. Його зведення до інтегралу Рімана, заснованого на визначенні "верхніх" та "нижніх" сум Дарбу. Загальні умови та класи існування інтегрованих функцій. Інтегрування за частинами.
курсовая работа, добавлен 15.06.2013Елементи комбінаторики. Основні види з’єднань: розміщення, перестановки і сполучення. Випадкові події, імовірність подій: класичне визначення імовірності. Теореми додавання та множення ймовірностей. Формула повної імовірності. Формули Байєса та Бернуллі.
лекция, добавлен 26.01.2014Визначення інтерпретації закону двоїстості де Моргана для довільної множини теорії ймовірності. Формула знаходження найймовірнішого числа подій. Специфіка використання інтегральної теореми Лапласа та розподілу Пуассона у рішеннях математичних задач.
практическая работа, добавлен 30.04.2015Вивчення біографії, наукової діяльності Тимофія Осиповського – великого російського математика, філософа-раціоналіста, вчителя М.В. Остроградського. Внесок Осиповського у такі наукові галузі, як астрономія, фізика, механіка. Громадська діяльність вченого.
реферат, добавлен 12.12.2011Засвоєння учнями змісту наслідків із теореми про вписаний кут та способів їх доведення. Розробка правильної рівності для градусних мір кутів. Дослідження медіани прямокутного трикутника, проведеної до гіпотенузи. Особливість знаходження меншого катета.
конспект урока, добавлен 05.09.2018Поняття інтерполяції як різновиду апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних. Характеристика теореми Вейерштрасса. Розгляд першої та другої інтерполяційної формули Ньютона. Оцінка похибок центральних формул.
курсовая работа, добавлен 06.04.2015Формули множення ймовірностей для залежних та незалежних випадкових подій. Локальна та інтегральна теореми Мавра-Лапласа. Формула Пуассона малоймовірних випадкових подій. Нерівності Чебишова та її значення. Теорема Бернулі. Біноміальний закон розподілу.
шпаргалка, добавлен 19.01.2014Закони розподілу ймовірностей випадкових величин. Теорема Чебишова та центральна гранична теорема Ляпунова. Нормальний закон розподілу випадкових величин: нормована функція Лапласа або інтеграл ймовірностей, розподіл Стьюдента, асиметрія та ексцес.
презентация, добавлен 21.03.2014Характеристична функція випадкової величини, її властивості. Означення теореми Бохнера-Хінчина. Формули обернення для характеристичних функцій. Аналіз теореми Хеллі. Неперервна відповідність між збіжністю функцій розподілу і характеристичних функцій.
контрольная работа, добавлен 22.11.2013