Розв’язність початкової задачі для позитивних систем лінійних функціонально-диференціальних рівнянь
Доведення теорем про пов’язані з лінійною задачею Коші функціонально-диференціальні нерівності. Отримання ряду умов, які гарантують однозначну розв’язність початкової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду.
Подобные документы
Адаптивна апроксимація та ітераційні функції. Ітераційні процеси для класу задач, в яких виникають системи диференціальних рівнянь. Жорсткі та нелінійні диференціальні системи. Метод побудови ітераційної функції. Рівняння Ван Дер Поля, модель осцилятора.
статья, добавлен 11.01.2010Характеристика методів послідовного виключення, Гаусса, Крамера та інших точних, ітераційних та ймовірнісних методів розв'язування систем лінійних алгебраїчних рівнянь. Приклади та алгоритм їх рішення. Обчислення визначника матриці за правилом Саррюса.
контрольная работа, добавлен 13.12.2013Розробка нових ефективних методів розв’язання крайових задач для еліптичних систем диференціальних рівнянь з частинними похідними на основі методу р-аналітичних функцій за допомогою їх інтегральних зображень через граничні значення аналітичних функцій.
автореферат, добавлен 23.11.2013Знакосталість компонента матриці A та вектора b. Алгоритми з розв’язання систем лінійних алгебраїчних рівнянь як багатократних агрегативно-ітеративних. Умови збіжності ітераційного процесу. Спектральне представлення лінійного компактного оператора.
автореферат, добавлен 05.01.2014Дослідження дискретно-неперервних крайових задач для векторних рівнянь Теорія граничної точки й граничного круга Вейля на випадок систем диференціальних рівнянь першого порядку та квазідиференціальних рівнянь довільного скінченного порядку з мірами.
автореферат, добавлен 13.07.2014Дослідження умов асимптотичної стійкості в середньому та середньому квадратичному розв'язках лінійних різницевих рівнянь з марковськими коефіцієнтами. Одержання достатніх умов асимптотичної стійкості за допомогою функцій Ляпунова з матричним аргументом.
статья, добавлен 14.09.2016Систематизація основних типів задач з параметрами. Рівняння, нерівності, їх системи і сукупності, які необхідно вирішити. Розв’язання лінійних, квадратних, ірраціональних та інших рівнянь з параметрами. Нерівності та системи рівнянь з параметрами.
научная работа, добавлен 13.02.2014Загальна характеристика методів рішення систем лінійних рівнянь. Метод релаксації у його найпростішій формі. Використання метода релаксації змінних в системах лінійних рівнянь. Підставлення знайдених значень кореню у вихідні рівняння для контролю.
контрольная работа, добавлен 17.01.2016- 109. Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
автореферат, добавлен 28.09.2015 - 110. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
автореферат, добавлен 29.07.2014 Дослідження асимптотичних властивостей розв’язків істотно нелінійних диференціальних рівнянь другого порядку з нелінійностями. Розробка асимптотичних зображень для підмножин класу розв’язків. Дослідження розв’язків різницевого рівняння Емдена-Фаулера.
автореферат, добавлен 14.08.2015Поняття, означення й теорема про достатні умови існування і єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Випадки, коли рівняння можна проінтегрувати. Загальний метод введення параметра, неповні рівняння. Розв’язок задачі Коші.
реферат, добавлен 06.11.2017Характеристика класу позитивних динамічних систем балансового типу, для математичного моделювання яких використовуються системи звичайних лінійних різницевих й диференціальних рівнянь. Побудова розімкненої дискретної динамічної математичної моделі.
автореферат, добавлен 29.08.2015Побудова апроксимаційних моделей за допомогою методу дискретизації часу для стохастичних диференціальних рівнянь у гільбертовому просторі. Швидкість збіжності апроксимацій за схемами Ейлера і Мільштейна для напівлінійних рівнянь еволюційного типу.
автореферат, добавлен 07.08.2014Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.
автореферат, добавлен 27.04.2014Вивчення задач з невідомими межами для гіперболічних систем квазілінійних рівнянь першого порядку щодо їхньої локальної й глобальної розв'язності. Рішення гіперболічної задачі Стефана з нелокальними крайовими умовами для системи квазілінійних рівнянь.
автореферат, добавлен 19.07.2015Встановлення умов коректної локальної і глобальної розв'язності гіперболічної задачі Стефана для систем рівнянь першого порядку з двома незалежними змінними. Визначення умов її існування та єдиності для квазілінійної системи рівнянь у криволінійній смузі.
автореферат, добавлен 23.08.2014Розробка питань і побудова теорії диференціальних та різницевих рівнянь в просторі обмежених числових послідовностей. Локальні координати для зліченної дискретної системи в околі інваріантного тора. Теорема про звідність системи до канонічного вигляду.
автореферат, добавлен 05.01.2014Дослідження умов існування та єдиності локальних і глобальних розв’язків нескінченних систем диференціальних рівнянь, що описують нескінченні ланцюги лінійно зв’язаних нелінійних осциляторів. Нелінійні різницеві рівняння з варіаційною структурою.
автореферат, добавлен 30.08.2014Методика побудови загального псевдорозв’язку систем лінійних алебраїчних рівнянь. Аспекти псевдообернення матриць на системи з розподіленими параметрами для розв’язання оберненних задач динаміки цих систем в обмежених просторово-часових областях.
автореферат, добавлен 11.11.2013Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
лекция, добавлен 13.09.2010Лінійні однорідні та неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами, розв'язок за формулою Ейлера. Рівняння із спеціальною правою частиною, використання методу Лагранжа. Рішення лінійних диференціальних рівнянь n-гo порядку.
лекция, добавлен 19.11.2009Розв’язання задач на складання рівнянь, в яких кількість невідомих перевищує кількість рівнянь системи, які розв’язуються за допомогою нерівностей, з цілочисловими невідомими та в яких потрібно знаходити найбільші і найменші значення деяких виразів.
лекция, добавлен 25.01.2014Задачі Коші в класах початкових умов, які є узагальненими функціями з просторів і дослідженню властивостей фундаментального розв’язку. Простори основних та узагальнених функцій і властивості перетворення Фур’є, згорток, згортувачів та мультиплікаторів.
автореферат, добавлен 30.07.2014Розв’язність задачі Діріхле для еліптичного рівняння в області з малим кутом, для квазілінійного еліптичного недівергентного рівняння в області з конічною точкою; нерівності гострого кута для пар лінійних еліптичних операторів в області з кутовою точкою.
автореферат, добавлен 21.11.2013