Основные этапы построения и анализа регрессионной модели
Выдвижение рабочей гипотезы. Теоретическая регрессия. Влияние случайного члена. Простая регрессионная модель. Метод наименьших квадратов. Прямой расчет коэффициентов регрессии. Проверка гипотез о статистической значимости уравнений парной регрессии.
Подобные документы
Регрессионный анализ - определение аналитического выражения связи, в котором изменение одной величины обусловлено влиянием одной или несколько независимых величин. Методы выбора математической модели в парной регрессии. Определение остатка для наблюдения.
реферат, добавлен 11.12.2017Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.
реферат, добавлен 08.02.2018Основные понятия и определения планирования и организации эксперимента. Метод наименьших квадратов и факторный эксперимент. Дисперсионный анализ и построение теоретической функции методом квадратов. Регрессионная зависимость эксперимента, её анализ.
курсовая работа, добавлен 27.09.2011Рассчет линейного коэффициента парной корреляции и коэффициента детерминации. Оценка статистической значимости параметров регрессии и корреляции. Критерий Дарбина-Уотсона для проверки независимости остатков. Ошибка прогноза и его доверительный интервал.
контрольная работа, добавлен 28.05.2018Определение среднего значения исследуемого параметра для каждой точки факторного пространства. Проверка гипотезы однородности дисперсий по критерию Корхена. Значения коэффициентов уравнения регрессии. Проверка адекватности математической модели.
курсовая работа, добавлен 03.11.2020Определение и проверка значения коэффициентов уравнения регрессии. Число степеней свободы в дисперсии адекватности. Получение уравнения регрессии 1 и 2 порядка в результате планирования и постановки эксперимента с учетом математических преобразований.
курсовая работа, добавлен 30.05.2018Коммерческий банк: понятие, сущность, функции. Теоретические аспекты построения статистической модели. Проявление мультиколлинеарности. Проверка уравнения регрессии на значимость. Построение модели зависимости прибыли банков от значимых факторов.
курсовая работа, добавлен 26.05.2013Задача корреляционного анализа и уравнение регрессии. Особенности и этапы проведения регрессионного анализа. Определение функции и оценка неизвестных значений. Границы доверительных интервалов. Этапы и технология работы с пакетом анализа "Регрессия".
презентация, добавлен 18.12.2012Описание построения графиков фактических значений и линии регрессии. Определение коэффициента детерминации, использование математического пакета MathCAD и Excel. Вычисление направления и тесноты связи, расчет линейного коэффициента парной корреляции.
контрольная работа, добавлен 30.09.2018Относительные частоты, среднее квадратическое отклонение, дисперсия, график эмпирической функции для заданного распределения частот выборки. Уравнение прямой линии регрессии. Проверка гипотезы о распределении генеральной совокупности по закону Пуассона.
контрольная работа, добавлен 19.06.2015Построение регрессионных моделей по рядам динамики. Использование критериев Фишера и Стьюдента, формулы линейного коэффициента корреляции. Оценка параметров уравнения регрессии, применение метода наименьших квадратов. Примеры гетероскедастичности.
контрольная работа, добавлен 25.04.2015Сущность гипотез о дисперсии, которые играют важную роль в экономико-математическом моделировании, так как дают возможность судить о пригодности модели, на основании которой строится теория. Проверка статистической значимости коэффициента корреляции.
контрольная работа, добавлен 14.01.2012Моделирование на основе временных рядов. Формальные критерии аппроксимации и статистические гипотезы. Изучение моделей с переменной структурой. Проверка на значимость коэффициентов регрессии. Руководство по использованию программы Time Series Processing.
методичка, добавлен 26.05.2012Выборочный метод и его основные понятия. Эмпирическая функция распределения и ее свойства. Проверка статистических гипотез, область их принятия, элементы теории корреляции и выборочные уравнения регрессии. Характеристика цепей Маркова и матрица перехода.
реферат, добавлен 25.02.2011Правила проведения количественного анализа. Расчёт неизвестных величин по результатам измерений, содержащих случайные ошибки. Оценка отклонения точки от прямой. Основной принцип метода наименьших квадратов. Построение градуировки в спектрофотометрии.
презентация, добавлен 29.05.2020Построение поля корреляции и формулирование гипотезы о форме связи. Расчет параметров уравнений линейной регрессии. Сравнительная оценка силы связи фактора с результатом с помощью среднего (общего) коэффициента эластичности. Средняя ошибка аппроксимации.
контрольная работа, добавлен 29.04.2015Случайная величина. Генеральная совокупность и выборка. Результат измерения. Доверительный интервал. Погрешности косвенных измерений. Алгоритм обработки данных косвенных измерений выборочным методом. Задача регрессии и метод наименьших квадратов.
методичка, добавлен 24.05.2012Вычисление коэффициентов регрессии и выявление тенденции развития процессов. Обработка табличных данных. Отчет кредитной организации о прибыли, убытка. Корреляционный анализ. Парная и множественная регрессии. Решение математических задач средствами Excel.
контрольная работа, добавлен 05.06.2022Экономическая интерпретация коэффициента регрессии. Вычисление коэффициента детерминации и средняя относительная ошибка аппроксимации. Вывод о качестве модели. Классификация уравнения не линейной регрессии: гиперболической, степенной, показательной.
контрольная работа, добавлен 12.01.2015Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
доклад, добавлен 07.08.2013Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.
курсовая работа, добавлен 06.08.2013Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.
контрольная работа, добавлен 17.05.2019Понятие регрессионного анализа и его цели. Использование линейных и нелинейных функций при построении регрессионных моделей. Проверка на значимость коэффициентов регрессии по статистическому критерию Стьюдента и ее уравнения с помощью F-критерия Фишера.
контрольная работа, добавлен 19.11.2013Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.
контрольная работа, добавлен 23.04.2014Математическое моделирование облака рассеяния. Исследование нелинейной корреляции. Составление матрицы планирования для четырех факторов. Нахождение коэффициентов регрессионного уравнения для данной матрицы. Определение значимости коэффициентов регрессии.
лабораторная работа, добавлен 06.10.2016