Обзор нейронной сети Хемминга
Решение задач классификации бинарных входных векторов с использованием искусственной нейронной сети Хэмминга. Расчет матрицы весовых коэффициентов нейронов первого слоя. Сигналы нейронной сети Хэмминга, получаемые на протяжении полного цикла расчета.
Подобные документы
Особенность подготовки данных для обучения сети. Главный анализ формирования обучающих массивов в задаче. Вычисление суммы квадратичных отклонений выходов паутины от эталонов. Основная характеристика проведения результатов регрессионного анализа.
лабораторная работа, добавлен 14.01.2015- 77. Нейроуправляемая сеть для параметрической оптимизации в задаче управления транспортными потоками
Решение задачи адаптивного управления транспортными потоками за счет изменения активных фаз светофоров. Использование нейронной сети для настройки параметров модели сети дорог. Минимизация разницы между суммарным входным и выходным потоками подсетей.
статья, добавлен 30.07.2017 - 78. Нейронные сети
Изучение типологии нейронных сетей. Основные отличия от машин с архитектурой фон Неймана. Оценка процессов, протекающих в мозге человека. Разработка демонстрационной версии программы Neural Network Wizard, созданной на основе нейронной сети Кохонена.
реферат, добавлен 13.04.2014 Оценка механизма формирования спроса, предложения, биржевой цены на фондовом рынке. Выбор структуры модели искусственной нейронной сети прямого распространения для эффективного решения класса задач анализа, прогнозирования финансовых временных рядов.
курсовая работа, добавлен 13.03.2018Специфические особенности алгоритма расчета порога бинаризации для полутонового изображения, реализованного на основе метода Оцу. Использование технологии искусственной нейронной сети для распознавания цифровых микроскопических изображений мокроты.
статья, добавлен 31.10.2017Фишинг как одна из главных причин взлома учетной записи в социальной сети. Развитие технологий машинного обучения - причина их активного применения в различных областях. Разработка алгоритма для получения набора данных для обучения нейронной сети.
статья, добавлен 09.05.2022Процесс создания и обучения нейронной сети для задачи классификации изображений собак и кошек с использованием TensorFlow и архитектуры MobileNetV2. Описание подготовки и предобработки данных, включая изменение размеров и нормализацию изображений.
статья, добавлен 05.09.2024Определение сущности фьючерсного контракта. Рассмотрение сравнительного анализа модели искусственной нейронной сети и регрессионных моделей. Ознакомление с процессом выбора программного обеспечения. Исследование временных рядов биржевых индексов.
дипломная работа, добавлен 30.08.2016Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.
реферат, добавлен 22.03.2019Основные преимущества использования нейронных сетей при обучении автоматизированному переводу. Описание общей схемы и принципа работы нейронной сети, применение данной технологии в системе NMTS. Характеристика технологий автоматического перевода.
статья, добавлен 28.01.2019Общее описание нейронных сетей, однослойные и многослойные сети. Описание программных моделей и алгоритмов их обучения. Проблема функции "исключающее или". Исследование представляемости однослойной и двухслойной нейронной сети, релаксация стимула.
курсовая работа, добавлен 26.06.2011Рассмотрение задачи фильтрации спама и наиболее распространенных подходов к ее решению в сравнении с методами искусственного интеллекта. Развитие средств защиты от спама. Решение задачи защиты от спама на основе списка адресов, сигнатур, теоремы Байеса.
статья, добавлен 19.05.2018Назначение графических управляющих элементов NNTool, подготовка данных, создание нейронной сети, обучение и прогон. Разделение линейно-неотделимых множеств. Задача аппроксимации. Распознавание образов. Импорт-экспорт данных. Применение нейронных сетей.
статья, добавлен 23.01.2014Изучение механизмов функционирования отдельных нейронов и их наиболее важного взаимодействия, для познания процессов поиска, передачи и обработки информации, происходящей в нейронной сети. Синапс как структура и функциональный узел между двумя нейронами.
статья, добавлен 09.06.2021Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.
статья, добавлен 01.02.2019Работа, заложившая основы теории кодирования. Нейронная сеть Хэмминга. Вычисление расстояния Хэмминга от входного образа до всех образов, хранимых сетью. Исследования в области численных методов решения разного рода прикладных математических задач.
реферат, добавлен 05.12.2013- 92. Метод буферизации запросов на передачу потоков реального времени по каналу телекоммуникационной сети
Разработка метода буферизации. Прогнозирование параметров сетевого трафика. Выбор рационального значения емкости памяти для буферизации запросов на передачу потоков реального времени по каналу телекоммуникационной сети. Построение нечеткой нейронной сети.
статья, добавлен 14.07.2016 Решение прямой и обратной задач с помощью многослойной нейронной сети прямой передачи сигнала. Операторы отбора особей в новую популяцию. Нахождение глобального минимума функции одной переменной и двух аргументов с помощью генетических алгоритмов.
курсовая работа, добавлен 21.02.2019Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Анализ существующих методов решения задачи распознавания человеческих лиц. Обнаружение местоположения лица на изображении методом цветового сегментирования. Моделирование процесса обучения искусственной нейронной сети на языке программирования C++.
дипломная работа, добавлен 24.05.2018Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.
статья, добавлен 15.02.2019Исследование принципа работы с аналитической платформы Deductor для создания законченных прикладных решений. Определение входных и выходных переменных. Методы нормализации данных и обучения нейронной сети. Запуск программы и способы вывода решений.
контрольная работа, добавлен 18.10.2014Нейронные сети как распределенные и параллельные системы, способные к адаптивному обучению путем анализа положительных и отрицательных воздействий. Общая характеристика нейронной сети прогнозирования курса рубля, знакомство с основными особенностями.
контрольная работа, добавлен 31.05.2013- 99. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Ассоциативная память на основе искусственной нейронной сети. Извлечение информации из ассоциативной памяти. Степень ортогональности и ее оценка при помощи Евклидова расстояния. Ключевые характеристики, определяющие качество пространственной группировки.
статья, добавлен 29.06.2017