Линейное уравнение

Исторические сведения о зарождении уравнения. Первоначальное значение термина алгебра. Зарождение искусства решения уравнений. Значительный вклад в развитие языка алгебры Ф. Виета. Усовершенствование теории уравнений с применением изобретенных символов.

Подобные документы

  • Алгебра - раздел математики, представляющий собой обобщение и расширение арифметики. Вклад Диофанта в развитие алгебраической науки. История открытия правил для решения кубических уравнений. Сферы применения теории рекуррентных последовательностей.

    контрольная работа, добавлен 30.05.2015

  • Равносильные уравнения, их следствия. Методы решения уравнений, тождественные преобразования над выражениями, входящими в уравнение. Правила преобразования уравнений. Алгоритм метода интервалов, примеры решения. Числовые неравенства, основные свойства.

    реферат, добавлен 22.12.2011

  • Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.

    статья, добавлен 18.01.2021

  • Получение обобщенных уравнений электродинамики и гидроаэродинамики, устанавливающих иерархию и взаимосвязь основных величин, изменяющихся в пространстве и времени, с помощью четырехвекторов и алгебры Клиффорда. Бивектор гравитационно-инерциального поля.

    статья, добавлен 27.05.2018

  • Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.

    лекция, добавлен 18.10.2013

  • Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.

    реферат, добавлен 22.11.2018

  • Общее понятие о комплексных числах и изучение методов решения уравнений первой степени. Примеры квадратных, кубических уравнений и извлечение корней. Число действительных корней и методы решения уравнений в радикалах о существований корней уравнений.

    презентация, добавлен 13.05.2012

  • Изучение личности Диофанта и принципов решения диофантовых уравнений. Рассмотрение системы чисел и символов, которые Диофант применял в своих трудах, примеров из сборника его задач, имеющих решение. Решение неопределенных уравнений в рациональных числах.

    реферат, добавлен 26.03.2019

  • Понятие целых и дробных уравнений. Определение многочлена стандартного вида. Понятие уравнения с одной переменной. Основные методы решения целых уравнений. Понятие и определение степени уравнения. Определение корня линейного и квадратного уравнения.

    презентация, добавлен 14.01.2015

  • Частные случаи уравнений плоскости. Сущность параметрического и канонического уравнения, взаимное расположение прямых. Нормальное уравнение плоскости, специальные виды уравнений. Решение уравнений с направляющим вектором. Пример общего уравнения прямой.

    презентация, добавлен 21.09.2017

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Проблема численного решения линейных уравнений. Основные методы решения нелинейных уравнений. Графическая иллюстрация метода половинного деления. Создание функциональной модели нахождения корней уравнения методами Ньютона, хорд и половинного деления.

    дипломная работа, добавлен 31.10.2014

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.

    контрольная работа, добавлен 06.09.2008

  • Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.

    контрольная работа, добавлен 26.11.2012

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • Прямой ход метода Гаусса - процесс приведения системы к треугольному виду. Методы решения систем линейных уравнений. Анализ преобразований: перемена местами двух любых уравнений; умножение обеих частей уравнения на произвольное число, отличное от нуля.

    контрольная работа, добавлен 18.12.2009

  • Обзор существующих методов решения нелинейных уравнений. Алгебраические и трансцендентные уравнения. Методы локализации корней. Алгоритм метода Ньютона. Численные методы решения нелинейных уравнений. Разработка и тестирование программного продукта.

    курсовая работа, добавлен 14.05.2014

  • Методы решения уравнений в странах древнего мира. Решение задач, решаемых уравнениями первой степени. Смысл решения Ахмеса и умножение смешанного числа. Метод одного ложного положения и способ фальшивого правила. Правила решения квадратных уравнений.

    реферат, добавлен 26.09.2011

  • Основные понятия и утверждения иррациональных уравнений, базовые принципы их решения. Теоремы о равносильности преобразований. Примеры общих классов иррациональных уравнений. Разработка и пример решения системы упражнений на каждый класс уравнений.

    курсовая работа, добавлен 05.05.2014

  • Определение иррациональных уравнений и их математические модели. Измерение отрезков в неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Равносильные уравнения и их следствия. Методы решения иррациональных уравнений.

    реферат, добавлен 29.10.2010

  • Метод Рунге-Кутты для решения как одиночных дифференциальных уравнений первого порядка, так и систем уравнений первого порядка. Исследование метода Рунге-Кутты четвертого порядка для решения дифференциальных уравнений. Программа для решения уравнения.

    контрольная работа, добавлен 29.03.2012

  • Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.

    методичка, добавлен 27.04.2016

  • Решение линейного уравнения вида АХ=В. Схема поиска линейных неравенств Ах>B, Ax(=)B. Аналитический и графический способ решения задач с параметрами. Поиск количества корней данного уравнения х^2-2х-8-а=0 в зависимости от значений параметра а.

    презентация, добавлен 17.09.2012

  • История и важные этапы развития теории дифференциальных уравнений. Дифференциальное исчисление, созданное Лейбницем и Ньютоном. Доказательство неразрешимости алгебраических уравнений в радикалах. Простейшие дифференциальные уравнения первого порядка.

    доклад, добавлен 19.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.