Готфрид Вильгельм Лейбниц

Ознакомление с биографией Готфрида Вильгельма Лейбница. Изучение математических работ Лейбница. Характеристика сущности теоремы трансмутации - общего приема преобразования интеграла, основанного на идее перехода от декартовых координат к полярным.

Подобные документы

  • Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.

    презентация, добавлен 18.09.2013

  • Рассмотрение природы интеграла. Особенности определения первообразной, дифференциала функции и основы специального способа выбора точек на частных отрезках разбиения при помощи интеграла Ньютона-Лейбница. Вычисление функции в интегральной сумме Римана.

    статья, добавлен 25.10.2016

  • А.Н. Колмогоров как один из создателей теории случайных процессов. История появления концепции случайности как алгоритмической сложности. Марковские цепи, их открытие и главные особенности применения. Вклад Готфрида Лейбница в развитие математики.

    доклад, добавлен 10.01.2012

  • Алгебра Лейбница как векторное пространство с билинейным произведением, в котором выполняется известное тождество. Пример нинельпотентного многообразия алгебр Лейбница с условием энгелевости порядка р. Его использование для поля нулевой характеристики.

    статья, добавлен 31.05.2013

  • Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.

    курсовая работа, добавлен 10.07.2017

  • Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.

    курсовая работа, добавлен 17.12.2017

  • Определённый интеграл - одно из основных понятий математического анализа. Первообразная, формула Ньютона-Лейбница. Сущность понятия, свойства определенного интеграла. Скорость прямолинейного движения тела. Примеры решения задач с определенным интегралом.

    презентация, добавлен 20.01.2022

  • Основные теоремы интегрального исчисления. Задача на нахождение площади криволинейной трапеции. Определенный интеграл как предел интегральной суммы. Рассмотрение основной теоремы Ньютона-Лейбница. Свойства интеграла с переменным верхним пределом.

    лекция, добавлен 17.01.2014

  • Решение задач на определение неопределенного интеграла, площади фигуры, образованной линиями y=4 и y=x2, порядка и границ интегрирования, общего интеграла дифференциального уравнения по признаку Лейбница. Применение признака Даламбера и расчет ряда Фурье.

    контрольная работа, добавлен 03.03.2014

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.

    курсовая работа, добавлен 09.10.2014

  • Понятие определенного, двойного и тройного интегралов. Характеристика теорем существования двойного и тройного интегралов. Сущность теоремы о среднем значении для двойного интеграла. Условия перехода пределов интегрирования к полярным координатам.

    контрольная работа, добавлен 27.08.2013

  • Равномерное стремление к предельной функции. Дифференцирование под знаком интеграла. Случай, когда пределы интеграла зависят от параметра. Применение правила Лейбница к вычислению производной по параметру интеграла. Исследование функции на непрерывность.

    контрольная работа, добавлен 13.10.2013

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

  • История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.

    презентация, добавлен 25.11.2015

  • Установление точек разрыва функции, составление уравнения асимптот. Поиск координат вершины параболы. Определение условий существования экстремума в стационарной точке. Поиск интеграла по формуле Ньютона-Лейбница. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.03.2014

  • Свойства и методы вычисления Эйлерова интеграла первого рода, его функции. Особенности вычисления Эйлерова интеграла второго рода. Применение правила Лейбница. Особенности вычисления интеграла Раабе. Использование метода математической индукции.

    контрольная работа, добавлен 03.06.2012

  • Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.

    доклад, добавлен 23.04.2013

  • Задача о вычислении объема при помощи двойного интеграла. Примеры вычислений двойного интеграла в декартовых координатах и в полярной системе. Тройной интеграл в цилиндрической системе координат: нахождение объема тела, ограниченного параболоидами.

    презентация, добавлен 26.09.2017

  • Вычисление значения функции в точке. Характеристика интегральной суммы функции на отрезке. Определение нижнего и верхнего предела интегрирования. Рассмотрение методов применения формулы Ньютона-Лейбница. Установление основных способов замены переменной.

    задача, добавлен 17.02.2016

  • Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.

    контрольная работа, добавлен 17.01.2015

  • Исследование конечной базируемости многообразий коммутативных алгебр Лейбница-Пуассона полиномиального роста в случае основного поля нулевой характеристики, их ограничение полиномом. Исследование частных случаев задачи, доказательство основных теорем.

    статья, добавлен 31.05.2013

  • Изучение свойств определенного интеграла. Описание точных методов их вычисления по формулам Ньютона-Лейбница, интегрирования по частям и путем замены переменной в определенном интеграле. Описание приближенных методов вычисления определённых интегралов.

    реферат, добавлен 01.12.2016

  • Интеграл Римана - важнейшее понятие математического анализа. Характеристика геометрического смысла данного выражения. Определение формулы Ньютона-Лейбница. Риманова сумма в пределе при измельчении разбиения - результат вычисления площади подграфика.

    контрольная работа, добавлен 10.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.