Интегральные уравнения. Вариационное исчисление

Классификация линейных интегральных уравнений. Уравнения Фредгольма и Вольтерра. Краевая задача на собственные значения и собственные функции (задача Штурма-Лиувилля). Поле экстремалей и функция Вейерштрасса. Изопериметрическая задача и задача Лагранжа.

Подобные документы

  • Практическое решение задачи Коши в MathCAD. Исправленный метод Эйлера. Метод Рунге-Кутта. Задача Коши для обыкновенного ДУ второго порядка. Задача выбра параметров, представляющих собой погрешность приближенного равенства. Нахождение значения функций.

    курсовая работа, добавлен 11.07.2010

  • Математический метод решения задачи Фараона. Иррациональное алгебраическое число, которое является корнем уравнения восьмой степени, как ответ задачи. Сведение задачи к нахождению положительного корня уравнения. Суть геометрического решения задачи.

    задача, добавлен 27.03.2013

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Задача для классического линейного гиперболического уравнения в прямоугольной характеристической области, ее решение с помощью редукции к системе уравнений Фредгольма второго рода, разрешимость которой устанавливается на основе метода априорных оценок.

    статья, добавлен 31.05.2013

  • Решение гиперболических и однородных интегральных уравнений методом последовательных приближений, нахождение членов функциональной последовательности. Доказательство Леммы. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами.

    статья, добавлен 15.06.2015

  • Особенность использования свойств гипергеометрической функции Гауса и классических методов интегральных уравнений. Характеристика получения двухточечной краевой задачи для обыкновенного нагруженного интегро-дифференциального математического равенства.

    статья, добавлен 20.05.2017

  • Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.

    контрольная работа, добавлен 13.08.2014

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Теорема о целочисленности решения классической транспортной задачи (КТЗ). Задача о назначениях (Задача выбора) и ее характеристика. Транспортная задача в сетевой постановке (с промежуточными пунктами). Метод отыскания путей минимальной стоимости.

    лекция, добавлен 14.08.2017

  • Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.

    статья, добавлен 18.05.2016

  • Изучение вопроса о том, при выполнении каких условий периодическая функция будет решением интегрального уравнения Вольтерра с периодическими коэффициентами. Характеристика применения принципа сжатых отображений и условия аналитичности заданных функций.

    статья, добавлен 18.09.2018

  • Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.

    автореферат, добавлен 26.01.2018

  • Кратчайшие линии на простейших поверхностях. Свойства плоских и пространственных кривых. Геодезические линии. Изопериметрическая задача. Задачи на равновесие системы упругих нитей. Принцип Ферма и его следствия. Задача о наименьшей поверхности вращения.

    учебное пособие, добавлен 11.11.2011

  • Дифференциальные уравнения в частных производных. Задача Пуанкаре, правила ее решения. Приведение к каноническому виду дифференциального уравнения второго порядка от двух независимых переменных. Краевые задачи для математического равенства Лапласа.

    шпаргалка, добавлен 04.04.2015

  • Методика решения интегральных уравнений типа свертки, их классификация. Краевые задачи типа Карлемана для полосы, задача Карлемана с дробно рациональным коэффициентом и с интегральным условием. Особенности сингулярных интегральных уравнений и их решение.

    дипломная работа, добавлен 06.07.2014

  • Рассмотрена задача о дифракции антиплоских волн сдвига (SH-волн) на неподвижной жесткой полосе, скрепленной с поверхностью упругого полупространства. Порядок решения парных интегральных уравнений и интегральных уравнений Фредгольма второго рода.

    статья, добавлен 11.07.2018

  • Построение регуляризирующих операторов для решения интегральных уравнений и систем уравнений Фредгольма первого рода. Доказательство теорем единственности и получение оценки устойчивости для таких уравнений в разных семействах множеств корректностей.

    автореферат, добавлен 23.11.2017

  • Сущность метода определителей Фредгольма. Пример нахождения резольвенты ядра с помощью рекуррентных соотношений. Алгоритм решения интегрального уравнения методом последовательных приближений. Исследование особенностей интегральных уравнений Фредгольма.

    курсовая работа, добавлен 17.06.2013

  • Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.

    курсовая работа, добавлен 22.02.2019

  • Разработка способа редукции задач с нормальными производными в граничных условиях к задачам Гурса. Построение картины их разрешимости. Для уравнения Лиувилля построены в явном виде решения задач с граничными условиями первого, второго и третьего рода.

    автореферат, добавлен 17.12.2017

  • Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.

    лекция, добавлен 17.01.2015

  • Анализ условий уравнения с независимыми переменными в конечной односвязной области. Значения функции в задаче Трикоми, освобождение от краевого условия и его эквивалентная замена нелокальным условием со смешением. Основные методы доказательства теоремы.

    реферат, добавлен 15.06.2015

  • Общая задача управления. Функция Гамильтона. Дифференциальные уравнения для фазовых координат. Интерпретация сопряженных переменных. Чувствительность оптимального значения целевого функционала к изменению начального момента времени и фазового состояния.

    презентация, добавлен 21.08.2015

  • Решение первой краевой задачи для вырождающегося дифференциального уравнения с частными производными при заданных условиях. Нахождение компонентов решения задачи, интегрирование неравенства. Области определения данной функции, ее частные случаи.

    статья, добавлен 31.05.2013

  • Исследование начально-краевой задачи для гиперболического уравнения с нелокальным граничным условием, содержащим интеграл от искомого решения. Нелокальные соотношения, связывающие значение искомого решения в граничных и внутренних точках области.

    статья, добавлен 31.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.