Лагранж Жозеф Луи
Обзор биографии, научной деятельности французского математика, астронома и механика Жозефа Луи Лагранжа. Первые достижения. Берлинский период. Научная деятельность в годы Французской революции. Последние годы. Труды Жозефа Луи Лагранжа. Интересные факты.
Подобные документы
Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.
контрольная работа, добавлен 23.04.2011Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.
лабораторная работа, добавлен 20.05.2015- 28. Теорема Нётер
Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.
курсовая работа, добавлен 10.11.2010 Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Биография великого русского математика Николая Ивановича Лобачевского. Студенческие годы, влияние немецких ученых на мировоззрение математика. Преподавательская деятельность ученого и самостоятельные исследования в области геометрии, его вклад в науку.
реферат, добавлен 24.12.2013Определение наилучшей функции по методике наименьших квадратов. Порядок вычисления интерполяционного полинома Лагранжа, который проходит через все заданные точки. Принципы и особенности представления приближенной функции многочленом второй степени.
контрольная работа, добавлен 15.05.2014Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Интерполяция как процесс нахождения многочлена не выше n-ой степени, ее содержание и предъявляемые требования, основные этапы и значение. Особенности интерполяционной формулы Лагранжа и Ньютона. Остаточный член интерполяции, методика его нахождения.
лекция, добавлен 08.09.2013Постановка сепарабельних, квадратичних задач нелінійного програмування. Метод множників Лагранжа. Необхідні умови існування сідлової точки. Задача з лінійною цільовою функцією й нелінійною системою обмежень. Вивчення класичної методики оптимізації.
презентация, добавлен 10.10.2013Необходимые и достаточные условия существования максимума и минимума функции, выбор метода нахождения экстремумов и полное математическое обоснование. Задачи, связанные с нахождением условного экстремума. Геометрический смысл метода множителей Лагранжа.
курсовая работа, добавлен 18.08.2009Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
курсовая работа, добавлен 11.01.2015Исследование линейно-квадратичной задачи управления процессом колебаний мембраны. Применение метода множителей Лагранжа. Получение системы интегро-дифференциальных уравнений Риккати с частными производными. Определение необходимых условий оптимальности.
статья, добавлен 28.08.2016Сущность интерполяции, понятие разделенных и конечных разностей. Интерполяционная формула Лагранжа и Ньютона, вывод формулы Ньютона через разделенные разности и ее применение для равностоящих узлов интерполяции. Биноминальные многочлены. Теорема Polya.
курсовая работа, добавлен 15.06.2011Исследование цепных дробей, раскрытие их свойств. Особенности разложения действительных чисел. Анализ погрешностей, возникших в результате раскладывания. Применение теории цепных дробей для решения алгебраических задач, доказательство теоремы Лагранжа.
курсовая работа, добавлен 14.06.2014- 41. Формула Тейлора
Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.
курсовая работа, добавлен 14.12.2015 Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Основной научный путь Э. Неттер – создание общей, абстрактной алгебры. Установление связи между янфинитезимальными симметриями и законами сохранения для соответствующей системы уравнений Эйлера-Лагранжа. Изучение сущности закона сохранения энергии.
презентация, добавлен 15.04.2014Миссии к точкам либрации L1 и L2. Исследования перелетов КА между коллинеарными точками либрации. Миссия GENESIS. Уравнения движения тела наименьшей массы в круговой ограниченной задаче трех тел. Устойчивые и неустойчивые многообразия - алгоритм расчета.
курсовая работа, добавлен 09.08.2018Рассмотрение компьютерной революции как характерного примера глобальной инструментальной научной революции. Условия дл распознавание материально-технических революций в истории математики. Характеристика и специфика революции в математике par excellence.
статья, добавлен 22.11.2021Построение общего решения характеристического однородного уравнения. Запись неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и специальной правой частью. Применение метода Лагранжа вариации произвольных постоянных.
методичка, добавлен 17.05.2023Обчислення заданої функції для проміжних значень аргументів за формулами Лагранжа. Виконання інтерполяції функції з використанням вбудованих сплайн-функцій пакета, що складається з кусків поліномів. Побудова графіків вихідної та інтерпольованої функцій.
лабораторная работа, добавлен 22.07.2017Определение определённого интеграла. Длина дуги кривой, прямоугольные координаты. Теорема Лагранжа о конечном приращении функции. Способы нахождения площади криволинейной трапеции. Площадь поверхности вращения. Строгое изложение теории интеграла О. Коши.
курсовая работа, добавлен 23.04.2011Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.
курсовая работа, добавлен 25.04.2014