Спектральна теорія блочних якобієвих матриць та її застосування до задачі інтегрування диференціально-різницевих ланцюжків
Застосування способу оберненої спектральної задачі. Побудова методу дослідження неізоспектральних ланцюжків, породжених рівнянням Лакса, пов'язаним із самоспряженими та унітарними операторами. Класифікація ланцюгових систем, що допускають інтегрування.
Подобные документы
Застосування методу Рімана-Гільберта при вивченні початкових задач. Дослідження загальної спектральної задачі для сумісних рівнянь пари Лакса. Вивчення властивостей узагальнених матричних функцій. Проведення аналізу аналітичної структури матриць стрибку.
автореферат, добавлен 20.07.2015Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.
статья, добавлен 29.07.2016Аналітичний метод для дослідження обернених задач розсіяння, що виникають у теорії розповсюдження електромагнітних хвиль. Побудова теорії інтегрування початково-крайових задач. Методи аналітичної факторизації, заснованих на задачі Рімана-Гільберта.
автореферат, добавлен 14.09.2015Дослідження методу точного розв'язку задачі Карлемана у кільці для двох пар функцій в окремому випадку. Розгляд лінійних диференціальних, диференціально-різницевих та диференціальних рівнянь, які зводяться до задач Карлемана для смуги та кільця.
автореферат, добавлен 04.03.2014Розв’язок задачі наближення та керування спектром. Вивчення адекватності лінійних диференціальних, різницевих і диференціально-різницевих систем. Оцінка розузгодженості, рівномірної по запізненню. Критичні випадки на площині та у тривимірному просторі.
автореферат, добавлен 07.03.2014Характеристика особливостей методів інтегрування лінійних диференціальних рівнянь 1-го порядку. Проведення аналізу диференціальних рівнянь в R-L контурі. Вивчення способу варіації довільної константи. Розгляд прикладу використання методу Бернуллі.
контрольная работа, добавлен 16.02.2014Встановлення існування та єдності класичного розв’язку оберненої задачі для параболічного рівняння з виродженням, коли невідомий залежний від часу старший коефіцієнт прямує до нуля. Знаходження умов коректної розв’язності оберненої параболічної задачі.
автореферат, добавлен 29.09.2014Розробка і застосування методики дослідження обернених задач, що базується на зведенні обернених задач до систем операторних рівнянь другого роду і аналізі методу параметрикса. Дослідження нехарактеристичної задачі Коші для рівняння теплопровідності.
автореферат, добавлен 15.11.2013Розкриття методу Фур’є для різних типів гіперболічних рівнянь: неоднорідних, вільних коливань струни. Загальна перша крайова задача. Крайові задачі зі стаціонарними неоднорідностями. Задачі без початкових умов. Загальна схема методу поділу змінних.
курсовая работа, добавлен 21.04.2012Вивчення монотонного двостороннього методу для наближеного інтегрування задач з параметрами в нерозділених двоточкових крайових умовах у випадку систем квазілінійних диференціальних рівнянь. Встановлення достатніх умов існування та єдиності їх розв’язків.
автореферат, добавлен 26.08.2015Методика дослідження властивостей фундаментальних розв'язків і фундаментальних матриць розв'язків для параболічних псевдодиференціальних рівнянь і систем. Теорія коректної розв'язності задачі Коші для таких рівнянь і систем у просторах Гельфанда й Шилова.
автореферат, добавлен 26.08.2015Дослідження початково-крайової задачі для квазілінійних двовимірних рівнянь параболічного типу зі сталими коефіцієнтами. Застосування функцій Гріна для одержання вагових апріорних оцінок точності різницевих схем у випадку крайових умов третього роду.
автореферат, добавлен 29.10.2015Геометричні моделі для розв’язання за допомогою процедур барицентричного усереднення параметрів задач відновлення гармонічних функцій багатьох змінних. Задачі ієрархічного конструювання формул наближеного кратного інтегрування типу Ньютона-Котеса.
автореферат, добавлен 27.07.2014Матриця, її вектори, теорема Кронекера-Капеллі, метод Жордана–Гаусса. Дії з вектором. Дослідження функцій, їх диференціал, побудова графіків, екстремум. Основні методи інтегрування. Диференціальні рівняння. Ряди Фур'є. Елементи математичної економіки.
курс лекций, добавлен 27.05.2014Розвиток методу інваріантних многовидів, його застосування для якісного і біфуркаційного аналізу деяких класів параболічних, функціонально-диференціальних і диференціально-різницевих рівнянь. Дослідження динаміки дисипативних структур і явищу буферності.
автореферат, добавлен 30.08.2014Застосування та обчислення криволінійних інтегралів першого роду. Умова незалежності криволінійного інтегралу від шляху інтегрування. Визначення довжини дуги кривої, маси кривої та координат центру мас. Особливості роботи силового векторного поля.
курсовая работа, добавлен 12.05.2016- 17. Крайові задачі для нерівномірно параболічних та еліптичних рівнянь з виродженнями і особливостями
Розв’язок задачі Діріхле та задачі з косою похідною для еліптичних рівнянь другого порядку. Вирішення крайової задачі та задачі Коші для параболічного рівняння. Побудова оптимального керування системами, що описуються параболічною крайовою задачею.
автореферат, добавлен 28.12.2015 Формулювання початково-крайової та варіаційної задачі піроелектрики. Коректність формулювання варіаційної задачі піроелектрики. Напівдискретизація за просторовою змінною. Однокрокова рекурентна схема інтегрування в часі. Поширення хвилі вздовж стержня.
статья, добавлен 30.01.2017Розгляд сингулярно збурених систем. Можливості формальної блочної діагоналізації системи при використанні функцій Ейрі, Вебера та Уіттекера. Основні методи побудови асимптотичного інтегрування лінійних диференціальних рівнянь з точками звороту.
статья, добавлен 22.01.2017Ознайомлення з історією виникнення ланцюгових дробів. Дослідження процесу застосування ланцюгових дробів для знаходження цiлих розв’язків лінійних рівнянь з двома невідомими. Визначення й аналіз місця ланцюгових дробів в курсі шкільної математики.
курсовая работа, добавлен 17.12.2017Дослідження нетривіального зв’язку між нелінійною системою Деві-Стюартсона і матричною ієрархією Бюргерса. Узагальнення відомих моделей теорії солітонів разом з їх зображеннями Лакса в алгебрі скалярних і матричних інтегродиференціальних операторів.
автореферат, добавлен 29.07.2014Звичайні диференціальні рівняння зі змінними коефіцієнтами, які зводяться до рівнянь зі сталими коефіцієнтами за допомогою заміни змінної. Коливання систем зі змінними параметрами. Інтегрування в квадратурах. Точні рішення для класу лінійних рівнянь.
статья, добавлен 30.01.2017Розв’язок задачі Коші для системи рівнянь із частинними похідними другого порядку за часовою змінною у класах аналітичних функцій та у просторах Соболєва. Розв’язки двоточкової задачі. Класи аналітичних функцій та простори Соболєва як класи єдиності.
автореферат, добавлен 28.07.2014Сутність схеми апроксимації початкових задач для систем диференціально-різницевих рівнянь запізнюючого й нейтрального типів. Опис процесу знаходження неасимптотичних коренів квазіполіномів для систем лінійних автономних рівнянь із багатьма запізненнями.
автореферат, добавлен 26.08.2015Одержання нових інтегральних оцінок точності методу перетворення Келі для наближення операторних експоненти і косинуса та доведення їх непокращуваності за порядком. Побудова нового методу дискретизації задачі Коші для неоднорідного рівняння 1-го порядку.
автореферат, добавлен 28.08.2014