Свойства пирамиды
Понятие многогранников в геометрии. Основное определение понятия пирамиды. Определение вершины, ребер, боковых граней пирамиды, ее основания и правила их нахождения. Основные свойства правильной пирамиды, апофемы, усеченной пирамиды и тетраэдра.
Подобные документы
Фигура, образованная тремя плоскостями, имеющими общую точку. Схема прямоугольного трёхгранного угла, доказательство свойств тетраэдра. Формула расстояния от вершины трёхгранного угла до гипотенузной грани. Косинусы углов нормали к гипотенузной грани.
реферат, добавлен 30.10.2010Из истории начертательной геометрии, требования к простейшим изображениям и их построение. Характеристика центрального проецирования как наиболее общего случая получения проекций. Суть параллельного проецирования. Пересечение многогранников плоскостью.
реферат, добавлен 06.10.2010Теоретические аспекты понятия арифметической операции. Краткая характеристика свойств ассоциативности, коммутативности и свойства наличия обратного элемента. Закон сокращения и простейшие свойства алгебраических систем, определение группы и подгруппы.
реферат, добавлен 30.10.2010Определение понятия показательной функции, ее основные свойства. Решение уравнений путем равносильных преобразований с использованием правил умножения и деления степеней. Правила упрощения уравнений до элементарного путем равносильных преобразований.
контрольная работа, добавлен 18.05.2017Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.
учебное пособие, добавлен 15.10.2016Матрицы и определители, их основные свойства и операции над ними. Собственные векторы и значения матрицы. Примеры использования аппарата для классических экономических моделей. Свойства скалярного произведения. Плоскость и прямая в пространстве.
методичка, добавлен 14.12.2010Отображения и преобразования. Современное определение и основные понятия проективной геометрии на плоскости. Перспективно-аффинное соответствие двух плоскостей. Построение главных направлений. Аналитическая аффинная геометрия. Проективные ряды и пучки.
учебное пособие, добавлен 31.03.2015Переход от практической к философской геометрии, получение новых геометрических свойств. Определение и элементы многогранников (грань, вершина, ребро). Примеры и вид выпуклых и невыпуклых многограннииков. Многогранники в природе, архитектуре и искусстве.
презентация, добавлен 02.04.2012Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.
контрольная работа, добавлен 15.06.2011Изучение четности и нечетности функции. Анализ нахождения наименьшего положительного периода функций. Определение промежутков знакопостоянства. Возрастание и убывание функций. Нахождение точек экстремума. Характеристика алгоритма исследования функции.
презентация, добавлен 22.03.2021Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Симплекс, его грани, ребра и вершины. Свойства векторов, задаваемых ребрами прямоугольного симплекса в двухмерном, трехмерном и четырехмерном евклидовом пространстве. Понятие n-мерного евклидового пространства. Решение пространственных задач по теме.
курсовая работа, добавлен 22.04.2011Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015- 115. Основы математики
Развитие понятия о числе. Корни, степени и логарифмы. Координаты и векторы. Основы тригонометрии. Степенные, показательные, логарифмические и тригонометрические функции. Свойства многогранников. Начала математического анализа. Применение интеграла.
учебное пособие, добавлен 29.11.2014 История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.
реферат, добавлен 19.10.2010- 117. Операции с векторами
Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.
контрольная работа, добавлен 16.06.2010 Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.
реферат, добавлен 19.07.2010Конус - геометрическое тело, состоящее из круга (основания), точки, не лежащей в плоскости этого круга (вершины) и всех отрезков, соединяющих вершину с точками основания. Определение площади поверхности конуса и его объема. Понятие касательной плоскости.
презентация, добавлен 25.04.2012Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.
лекция, добавлен 25.01.2011- 121. Аксиомы стереометрии
Стереометрия – раздел геометрии, в котором изучаются свойства фигур в пространстве. Понятие плоскости и пространства геометрии. Общепринятые изображения плоскости. Аксиомы стереометрии, их сущность и содержание. Следствия из аксиом стереометрии.
презентация, добавлен 13.04.2012 - 122. Платоновы тела
История изучения правильных многогранников. Космический кубок Кеплера. Анализ его теории о связи многогранников с шестью открытыми к тому времени планетами Солнечной системы. Основные виды правильных многогранников в трёхмерном евклидовом пространстве.
презентация, добавлен 18.04.2016 - 123. Действия с матрицами
Понятие, виды и формулы расчета обратной, присоединенной и нулевой матриц, определение суммы и произведения, доказательство свойства умножения ее на число, свойства линейных операций. Определители для двух неравных квадратных матриц одинакового размера.
лекция, добавлен 26.01.2014 Общие свойства многоугольников. Доказательства теорем Жордана, Птолемея, описанных и вписанных многоугольников. Формула суммы углов произвольного многоугольника, понятие его степени. Определение числа точек самопересечения замкнутой ломаной линии.
контрольная работа, добавлен 16.12.2010Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
курсовая работа, добавлен 06.07.2014