История числа Пи
Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.
Подобные документы
Графический метод решения уравнений (уравнение окружности, эллипса, гиперболы, кардиоида). Нахождение модуля, методы определения пределов и производных. Условия применений правила Лопиталя, вычисление экстремумов, монотонности. Расчет дифференциалов.
контрольная работа, добавлен 11.04.2009Історія появи числа в геометрії, його ірраціональність та вираження дробом. Трансцендентність числа пі - математичної константи, що визначається у Евклідовій геометрії як відношення довжини кола до його діаметра або як площа круга одиничного радіуса.
реферат, добавлен 20.12.2016- 103. Комплексные числа
История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.
контрольная работа, добавлен 30.01.2010 Первый замечательный предел: его основная формула, характеристика доказательства и следствий из него. Второй замечательный предел: формула второго замечательного предела, его доказательство и следствие. Примеры решения задач с использованием пределов.
реферат, добавлен 28.05.2015Загальні відомості про числа Фібоначчі. Означення та основні властивості чисел Фібоначчі. Метод математичної індукції і числа Фібоначчі. Взаємозв'язок чисел Фібоначчі з золотим перетином. Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 12.11.2018Содержательные основы концепции философии числа пифагорейцев. Стадии формирования математических учений Платона и Аристотеля. Определение числовой гармонии. Значение теоретических подходов к вещественности числа для философии математики Аристотеля.
статья, добавлен 04.02.2017- 107. Комплексные числа
История появления комплексных чисел. Геометрическая интерпретация комплексного числа. Модуль, сложение, умножение, квадратные уравнения комплексных чисел. Тригонометрическая форма, модуль и аргументы чисел. Возведение в степень и извлечение корня.
контрольная работа, добавлен 22.01.2011 История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
курсовая работа, добавлен 07.06.2014Изучение определения числа у Г. Фреге. Сравнительный анализ подхода Г. Фреге со взглядами И. Канта, оригинальность и приоритет фрегевского подхода. Недостатки определения числа у Г. Фреге, выявленные Б. Расселом. Критическая оценка исследований Рассела.
статья, добавлен 24.11.2018Выведение формулы для нахождения суммы углов выпуклого n-угольника. Определение правильных n-угольников, равных и одноименных многоугольников. Вычисление суммы углов пяти- и восьмиугольника. Методы расчета суммы внешних углов выпуклого многоугольника.
презентация, добавлен 30.04.2013Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016Понятие комплексного числа, история развития. Свойства комплексных чисел, действия с ними: сложение, вычитание, возведение в степень, извлечение корня, графическое изображение, перевод в тригонометрическую форму. Применение комплексных чисел в геометрии.
реферат, добавлен 02.04.2022- 114. Комплексные числа
История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.
реферат, добавлен 29.08.2014 Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.
статья, добавлен 30.03.2017Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.
статья, добавлен 03.03.2018Формула Валліса як перше бачення числа Пі у вигляді границі легко обчислюваної раціональної варіанти. Особливості оцінки величини факторіалу при великих значеннях за допомогою формули Стірлінга. Основні методики розрахунку рекурентних інтегралів.
курсовая работа, добавлен 15.06.2017Сущность и общая характеристика факультативных занятий по математике, основные формы организации и методы проведения. Содержание факультативного курса “Комплексные числа и их приложения”. Общие методические рекомендации к изучению факультативного курса.
курсовая работа, добавлен 21.09.2010- 119. Высшая математика
Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.
контрольная работа, добавлен 16.04.2010 - 120. Комплексні числа
Алгебраїчна форма комплексного числа. Дії над комплексними числами, заданими в алгебраїчній формі. Геометрична інтерпретація комплексних чисел. Тригонометрична форма комплексного числа. Дії над комплексними числами, заданими в тригонометричній формі.
лекция, добавлен 08.08.2014 Составление "коллекции" простых чисел способом "решето Эратосфена". Формулирование и возможности разрешения проблемы Гольдбаха-Эйлера. Рассмотрение линейных, плоских и телесных фигурных чисел. История многоугольных и дружественных чисел в математике.
реферат, добавлен 08.12.2017Рассмотрение кривых, имеющихся в полярной системе координат. Определение площади фигуры, ограниченной линиями. Вычисление двойного интеграла в полярной системе координат. Расчет уравнения геометрической окружности с центром в определенной точке.
контрольная работа, добавлен 05.06.2014Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.
курсовая работа, добавлен 17.11.2019Математическая формула для подъемной силы, действующей на единицу длины крыла самолета. Специфические особенности применения системы обыкновенных дифференциальных уравнений первого порядка для определения траектории движения летательных аппаратов.
статья, добавлен 17.11.2021Определение периметра и площади треугольника, длины ребра, объем, уравнения плоскости пирамиды по координатам вершин данных фигур. Приведение уравнения кривой второго порядка к каноническому виду. Решение системы линейных уравнений с тремя неизвестными.
контрольная работа, добавлен 15.11.2013