Распределение Бернулли. Теорема Пуассона.
Сущность теорем распределения Бернулли и Пуассона. Биномиальное распределение (распределение Бернулли). Распределение Пуассона. Определение и основные характеристики закона Пуассона. Дополнительные характеристики распределения Пуассона. Примеры задач.
Подобные документы
Рассмотрение и анализ сущности математической статистики, которая тесно связана с теорией вероятности и базируется на ее математическом аппарате. Исследование и характеристика главных особенностей биномиального распределения (распределения Бернулли).
контрольная работа, добавлен 28.11.2016Вычисление вероятности с помощью теоремы Пуассона, функции распределения и неравенства Маркова. Нахождение математического ожидания и дисперсии, коэффициента корреляции, среднего квадратического отклонения и функции распределения случайной величины.
контрольная работа, добавлен 27.04.2015Доказательство того, что многочлен Бернулли четного (нечетного) порядка равен абсолютно сходящемуся ряду по объединению хаосов Радемахера четных (нечетных) порядков. Система функций Уолша. Определение одночленов Бернулли. Разложения первых многочленов.
статья, добавлен 31.05.2013Свойства вероятностной модели процесса, проверка гипотез с помощью выборочных характеристик. Распределение хи-квадрат в задачах статистического анализа. Распределение вероятных значений случайной величины. Критические точки распределения хи-квадрат.
контрольная работа, добавлен 16.12.2014Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.
презентация, добавлен 25.09.2017Виды распределения, его законы. Дискретное и непрерывное распределение. Свойства случайных величин. Эмпирические функции распределения. Параметры функции нормального распределения. Вычисление выравнивающих частот кривой нормального распределения.
реферат, добавлен 29.03.2018- 57. Теорема Бернулли
Доказательство математического выражения, позволяющего находить вероятность появления события при независимых испытаниях. Варианты применения теоремы Бернулли при решении практических задач. Расшифровка модуля вероятности отклонения частоты события.
краткое изложение, добавлен 12.04.2014 Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.
курс лекций, добавлен 23.04.2016Определение числа исходов, благоприятствующих появлению заданного события. Проведение независимых испытаний. Применение теоремы Пуассона. Нахождение математического ожидания, дисперсии, среднего квадратического отклонения и функции распределения.
контрольная работа, добавлен 20.12.2015Сущность, принципы закона распределения, его основные формы. Определение среднего значения (математического ожидания) случайной величины. Центральные моменты распределения случайной величины. Порядок расчета дисперсии и среднеквадратического отклонения.
лекция, добавлен 26.09.2017Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015Условные законы распределения непрерывных случайных величин, имеющих непрерывное совместное распределение. Условное математическое ожидание случайной величины. Сущность корреляции. Свойства ковариации. Нормальный закон распределения на плоскости.
реферат, добавлен 26.01.2012Вероятность несовместимых и независимых событий. Пример использования формулы Бернулли. Плотность распределения вероятностей, математическое ожидание, среднее квадратичное отклонение и дисперсия. Интервальный и дискретный ряды распределения частот.
задача, добавлен 20.11.2015Предыстория математической логики. Алгебраическая теория чисел. Социальная и антропометрическая статистика. Вклад К.Ф. Гаусса в теорию вероятностей. Исследования С.Д. Пуассона и О. Коши. П.Г. Лежен-Дирихле и теорема об арифметических прогрессиях.
книга, добавлен 25.11.2013Определение и анализ вероятностей событий. Рассмотрение формулы полной вероятности. Изучение формулы Бернулли. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Ознакомление с законом распределения случайной величины.
контрольная работа, добавлен 24.03.2017Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.
реферат, добавлен 05.06.2012Описание процесса построения кривой функции распределения, влияние изменения параметров кривой на форму кривой плотности вероятности. Последствия увеличения среднего квадратического отклонения, сущность и особенности нормального распределения Гаусса.
лабораторная работа, добавлен 08.11.2015Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.
лабораторная работа, добавлен 15.05.2020Основные непрерывные распределения, которые используют в лесном деле. Типы преобразований, плотность распределения кривых семейства Джонсона. Распределение типа А или Грама-Шарлье. Аппроксимация экспериментального ряда числа стволов в антропогенных лесах.
реферат, добавлен 29.03.2018Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Первое доказательство частного случая центральной предельной теоремы. Определение нормального распределения. Свойства нормальной кривой Гаусса. Определение экстремума функции. График функции плотности распределения. Максимальная дифференциальная энтропия.
реферат, добавлен 05.03.2020Кривая кратчайшего спуска. Спираль Архимеда, особенности её изображения. Главное свойство логарифмической спирали. Содержание теоремы Паскаля, её иллюстрация. Теорема французского математика Шарля Барианшона. Лемнискаты Бернулли с двумя фокусами.
контрольная работа, добавлен 25.05.2012Построение интервального и точечного статистического распределения результатов наблюдений, полигона и гистограммы относительных частот. Нахождение оценок математического ожидания и дисперсии. Проверка гипотезы распределения по критерию согласия Пирсона.
практическая работа, добавлен 11.11.2017Анализ возможных значений случайной величины и вычисление вероятности их появления. Использование формулы Бернулли в определении вероятности наступления событий, построение графика функции распределения. Расчет математического ожидания и дисперсии.
контрольная работа, добавлен 20.10.2023Порядок определения центра рассеивания случайного вектора и вычисление условного математического ожидания. Построение ковариационной и корреляционной матрицы. Закон распределения случайных величин и вероятности экспоненциального закона распределения.
контрольная работа, добавлен 19.03.2012