Б. Рассел о бесконечности
Идея бесконечности, без которой невозможна математика, вводится в систему Principia Mathematica посредством аксиомы бесконечности. Трактовка аксиомы Расселом (английским математиком и философом) бесконечности как содержательного высказывания о мире.
Подобные документы
- 51. Принцип Дирихле
Краткая биография немецкого математика, специалиста в сфере комбинаторики, дискретных объектов и теории чисел - Петера Густава Лежен Дирихле. Формулировки и сфера применения законов, открытых математиком. Методика решения задач по принципу Дирихле.
презентация, добавлен 15.05.2014 Происхождение и значение понятия математика. Ее роль в современной науке, применение в разных областях научного знания. Интернациональный язык чисел. Изобретение электронно-вычислительных машин. Известные высказывания о математике гениальных людей.
реферат, добавлен 11.04.2013Изучение определения числа у Г. Фреге. Сравнительный анализ подхода Г. Фреге со взглядами И. Канта, оригинальность и приоритет фрегевского подхода. Недостатки определения числа у Г. Фреге, выявленные Б. Расселом. Критическая оценка исследований Рассела.
статья, добавлен 24.11.2018Характеристика раздела геометрии, в котором изучаются изображения на поверхности. Точка и прямая как основные геометрические фигуры на плоскости. Проведение исследования аксиом принадлежности, расположения, измерения, откладывания и параллельности.
презентация, добавлен 25.01.2017Математика как наука о количественных отношениях и пространственных формах действительного мира. История ее развития от древних времен до наших дней: содержание и расширение предмета, универсальность и применение. Гениальные математические открытия.
реферат, добавлен 24.12.2010Математика как наука о количественных отношениях и пространственных формах действительного мира. Этапы развития математики. Использование в математике двух видов умозаключений: дедукции и индукции. Роль математики в различных областях деятельности.
реферат, добавлен 18.06.2012Исследование проекционных способов начертательной геометрии, дающих возможность получать наглядные изображения проектируемых объектов и комплексов. Рассмотрение аксиомы Евклида о параллельности. Изучение классификации проекций и примеров их построения.
реферат, добавлен 23.12.2013- 58. Математика
История возникновения математики. Краткие биографии великих древнегреческих и французских ученых, философов, мыслителей и математиков (Евклида, Пифагора, Архимеда, Виета, Фалеса). Их основные открытия. Высказывания некоторых великих личностей о науке.
презентация, добавлен 16.03.2011 - 59. Алгебра множеств
Понятие и направления исследования множеств, их классификация и разновидности, свойства и отличия. Мощность множества и основные критерии ее оценки. Метрические пространства: внутренность, внешность и граница. Непрерывные отображения. Аксиомы счетности.
курс лекций, добавлен 28.03.2012 Несобственный интеграл с бесконечными пределами интегрирования, его вычисление. Признаки сравнения несобственных интегралов от неограниченных функций. Следствие аксиомы о сходимости интеграла с большей подынтегральной функцией, исследование примеров.
презентация, добавлен 25.09.2017Характеристика аксиоматического метода построения научной теории, Особенности аксиом принадлежности, измерения, расположения, откладывания, параллельности, которые составляют основания планиметрии. Анализ научных трудов Евклида и геометрии Лобачевского.
доклад, добавлен 29.03.2010Понятие параллельных линий по определению Евклида. Метод доказательства от противного Саккери. Мнение Гаусса о недоказуемости аксиомы Евклида. Заключение о существовании абсолютной меры Ламберта. Исследования Лобачевского, теория относительности.
реферат, добавлен 30.06.2011Геометрическая интерпретация векторного произведения в зеркальном отражении. Главная особенность доказательств коммутативности сложения векторов на плоскости. Основные свойства скалярного отображения. Характеристика аксиомы параллельности Евклида.
контрольная работа, добавлен 28.04.2016Определение предмета изучения планиметрии и стереометрии. Характеристика линий и поверхностей как важнейшего класса геометрических фигур. Изучение основных свойств прямых и плоскостей. Аксиомы стереометрии как утверждения, не требующие доказательств.
презентация, добавлен 13.04.2012Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.
книга, добавлен 28.03.2013Раздел геометрии, в котором изучаются свойства фигур в пространстве. Основные фигуры: плоскость, прямая, точка. Геометрические тела: куб, тетраэдр, параллелепипед. Исходное положение научной теории, принимаемое без доказательства, следствия из аксиом.
презентация, добавлен 13.04.2012Аксиомы полуплоскости и луча: их возможности в построении геометрии. Основная характеристика изучения проблемы Жордана. Особенность смежных и вертикальных углов. Изучение метода равных треугольников, как исторически первого геометрического способа.
курсовая работа, добавлен 25.10.2015Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Основные аксиомы стереометрии и их простейшие следствия. Пример доказательства параллельности и перпендикулярности прямых, плоскостей. Декартовы координаты и векторы в пространстве. Использование теоремы Пифагора. Задачи по стереометрии и их решение.
учебное пособие, добавлен 23.09.2012- 70. Мир математики
Выступление учителя "Зачем нужна математика в жизни?" Выступления учащихся: математика в природе, экономике, архитектуре. Математическая игра "Спринт эрудитов". Физическая величина, измеряемая в метрах в секунду за секунду. Самая большая птица в мире.
конспект урока, добавлен 09.12.2010 Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013Определение зависимости пятого постулата от третьего. Рассмотрение псевдосферических поверхностей вращения. Рассмотрение равносильной аксиомы параллельности Евклида. Обзор сферического и эллиптического пространства Римана с отождествлёнными точками.
статья, добавлен 28.09.2016Общие аксиомы конструктивной геометрии. Инструменты геометрических построений. О возможности решения задач одним циркулем. Построение на плоскости одной линейкой. Элементарные задачи, этапы и методы их выполнения. Методические рекомендации по обучению.
дипломная работа, добавлен 06.03.2014Зарождение геометрии в Древнем Египте. Элементарная планиметрия: аксиомы и постулаты. Названия и площади многоугольников. Примеры элементарных геометрических доказательств. Стереометрия: определение плоскости, свойства многогранника, призмы, пирамиды.
лекция, добавлен 20.04.2010Определение содержания и исследование истории доказательств аксиомы параллельности Евклида, или пятого постулата, как одной из аксиом, лежащих в основании классической планиметрии. Разработка Николаем Ивановичем Лобачевским доказательства V постулата.
презентация, добавлен 13.04.2012