К теории электронных возбуждений в молекулах на основе уравнения Петерсилки–Госсманна–Гросса
Исследование эффективного метода расчета спектра электронных возбуждений молекул в теории функционала плотности на основе уравнения Петерсилки–Госсманна–Гросса. Расчет спектров методом Касиды, последовательных приближений, электронных возбуждений.
Подобные документы
Сущность метода определителей Фредгольма. Пример нахождения резольвенты ядра с помощью рекуррентных соотношений. Алгоритм решения интегрального уравнения методом последовательных приближений. Исследование особенностей интегральных уравнений Фредгольма.
курсовая работа, добавлен 17.06.2013Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.
контрольная работа, добавлен 17.05.2019Нахождение корней линейных и квадратных уравнений методом последовательных приближений с использованием Microsoft Excel. Решение трансцендентного уравнения с двумя верными десятичными знаками методом проб; комбинированный метод хорд и касательных.
контрольная работа, добавлен 26.11.2013Определение для сингулярно возмущенного операторного уравнения Фредгольма последовательных итерационных, а также асимптотических приближений. Выбор нулевого приближения. Теорема о биортогонализации. Выбор частного решения неоднородного уравнения.
статья, добавлен 05.07.2013- 5. Об одной нелокальной краевой задаче для гиперболического уравнения, вырождающегося внутри области
Решение гиперболических и однородных интегральных уравнений методом последовательных приближений, нахождение членов функциональной последовательности. Доказательство Леммы. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами.
статья, добавлен 15.06.2015 Решение интегро-дифференциального уравнения задачи о плоской трещине нормального разрыва в упругом пространстве. Построение рекуррентного процесса для определения последовательных приближений функции Гельдера. Использование формулы Адамара и Лагранжа.
статья, добавлен 29.05.2017Абсолютная и относительная погрешности числа. Нахождение методом итераций действительных корней уравнения с верными знаками. Рекуррентное соотношение метода простой итерации. Контроль величины неувязки по исходному уравнению, расчет корней уравнения.
контрольная работа, добавлен 06.06.2012Основные уравнения для решения постановки пространственных нестационарных задач теории термоупругопластичности. Геометрические соотношения и определяющие уравнения, описывающие неизотермические процессы нагружения с учетом траектории деформирования.
статья, добавлен 29.11.2016Построение математической модели установившегося теплового режима для расчета температуры проводов с помощью решения уравнения теплопроводности и на основе уравнения теплового баланса. Приведение расчета коэффициента теплоотдачи естественной конвекции.
статья, добавлен 02.02.2019Изучение понятия дифференциального уравнения, связывающего независимую переменную, искомую функцию и её производные различных порядков. Общее и частное решение линейного и однородного дифференциального уравнения. Исследование метода вариации постоянной.
презентация, добавлен 03.05.2012Вариационное исчисление решения задач, связанных с минимизацией функционала по уравнению Эйлера. Минимизация заданного функционала по методу Ритца. Графики приближения. Приближённое решение краевой задачи для уравнения Эйлера методом конечных разностей.
курсовая работа, добавлен 23.04.2011Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
курсовая работа, добавлен 08.06.2013Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
курсовая работа, добавлен 16.04.2015Дифференциальное уравнение как соотношение между функциями и их производными в основе математического моделирования. Особенности уравнения в полных дифференциалах. Условие полного дифференциала (необходимый признак уравнения в полных дифференциалах).
реферат, добавлен 21.08.2017Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.
курсовая работа, добавлен 04.03.2017Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.
контрольная работа, добавлен 31.03.2015Применение неразрешимых и трудноразрешимых алгоритмических проблем теории групп в качестве основы обозначенного построения. Исследование бесконечных групп и построение на их основе возможно односторонних функций. Методы теории групп и теории сложности.
статья, добавлен 19.12.2019Решение нелинейного уравнения методом хорд. Порядок определения корня нелинейного уравнения методом касательных (Ньютона). Особенности применения комбинированного метода хорд и касательных. Построение соответствующих блок-схем и написание текста программ.
контрольная работа, добавлен 29.10.2017Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
лабораторная работа, добавлен 10.10.2015Задачи о неподвижной точке. Ускорение сходимости последовательных приближений. Алгоритм решения по методу Эйткена. Разработка программного проекта, реализация в С++. Отыскание корня нелинейного скалярного уравнения, отображение в одномерном пространстве.
курсовая работа, добавлен 20.02.2015Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.
дипломная работа, добавлен 14.07.2016Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.
контрольная работа, добавлен 29.11.2016Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
курсовая работа, добавлен 11.04.2014Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012Исследование и обоснование эффективности метода определения положений звеньев механизмов с одно- и двухподвижными кинематическими парами. Определение положений фигур методом последовательных приближений, порядок проведения соответствующих расчетов.
статья, добавлен 30.07.2018