Экономико-математические модели задач

Максимальное значение целевой функции. Линейное программирование графическим методом. Уравнение граничных прямых и построение их на плоскости. Базисные переменные системы ограничений. Определение результирующей таблицы. Область допустимых решений.

Подобные документы

  • Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.

    методичка, добавлен 10.04.2012

  • Построение математической модели процесса всплытия подводной лодки, анализ физической сути процесса. Определение параметров и сил, действующих на лодку. Нахождение частных случаев решения задачи методом дифференциальных уравнений, построение графиков.

    курсовая работа, добавлен 27.04.2017

  • Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.

    контрольная работа, добавлен 22.08.2014

  • История зарождения и создания линейного программирования. Разработка симплекс-метода и рассмотрение задач отыскания условного экстремума функции. Графический способ решения различных задач линейного программирования, изображение геометрических условий.

    курсовая работа, добавлен 04.04.2011

  • Теория движения плоскости. Определение и свойства центральной и осевой симметрии плоскости, свойства переноса и поворота. Композиция центральных симметрии и переносов. Координатные формулы движений плоскости. Примеры задач на тему "Движение плоскости".

    курсовая работа, добавлен 05.10.2017

  • Использование системы MathCAD в исследовании математической модели колебательного движения системы с демпфером. Понятие математической модели и их классификация. Числовые методы решения дифференциальных уравнений. Функции дифференциальных уравнений.

    курсовая работа, добавлен 26.02.2012

  • Определение понятия производной. Изучение правил и формул дифференцирования. Анализ геометрического смысла производной. Построение уравнения касательной и нормали к графику функции, угла между ними. Решение планиметрических и стереометрических задач.

    курсовая работа, добавлен 14.02.2017

  • Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.

    курс лекций, добавлен 06.11.2009

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Изучение основных способов задания прямой на плоскости и в пространстве. Взаимное расположение прямых в пространстве: параллельные, пересекающиеся и скрещивающиеся. Взаимное расположение прямой и плоскости: параллельна, лежит в плоскости и ее пересекает.

    курсовая работа, добавлен 01.12.2017

  • Общая характеристика линейной одномерной модели нестационарного процесса теплопроводности. Знакомство с основными особенностями решения граничных обратных задач теплопроводности на основе параметрической оптимизации. Рассмотрение уравнения Фурье.

    статья, добавлен 28.01.2020

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.

    контрольная работа, добавлен 29.11.2015

  • Общая характеристика математической модели, порядок ее анализа. Пример построения модели Солнечной системы. Компонентные и топологические уравнения моделируемого объекта. Топологические уравнения как способ соединения ветвей, не отражая их содержимого.

    реферат, добавлен 21.10.2013

  • Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.

    презентация, добавлен 17.09.2013

  • Динамическое программирование при разработке правил управления запасами, распределении ресурсов между проектами, планировании ремонта оборудования. Принцип оптимальности и уравнение Беллмана. Создание проекта с помощью методов сетевого моделирования.

    контрольная работа, добавлен 23.04.2015

  • Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.

    контрольная работа, добавлен 20.12.2013

  • Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.

    лекция, добавлен 01.09.2017

  • Определение окружности как геометрической фигуры, состоящей из всех точек плоскости, расположенных на заданном расстоянии от её центра. Центр, радиус, хорда и диаметр окружности. Построение окружности, перпендикулярных прямых и угла, равного данному.

    презентация, добавлен 04.12.2012

  • Применение геометрических образов, полученных с помощью программных средств. Решение дифференциальных уравнений. Понятие автономной системы и фазового пространства. Фазовый портрет линейной системы на плоскости. Построение фазовых портретов в Delphi.

    учебное пособие, добавлен 08.09.2015

  • Особенности геометрического решения задач линейного программирования и решения симплекс-методом. Рассмотрение метода искусственного базиса. Основные правила выпуклого программирования. Условия Куна-Таккера. Применение метода возможных направлений.

    методичка, добавлен 13.09.2015

  • Формулирование условий перпендикулярности двух прямых общего положения. Определение на чертеже расстояния от точки до прямой частного положения. Построение точки пересечения плоскости с прямой линией общего положения и линии пересечения двух плоскостей.

    лекция, добавлен 24.07.2014

  • Теория и основные методы формализации знаний прикладного характера, формальное решение качественных задач в математике. Изучение сущности концепции логического программирования. Математические задачи на нахождение решений известными формальными методами.

    статья, добавлен 04.03.2021

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Решение задачи симплекс-методом. Составление экономико-математической модели задачи. Определение вероятности выхода из строя узла. Вычисление общего интеграла дифференциального уравнения первого порядка. Определение области сходимости степенного ряда.

    контрольная работа, добавлен 09.06.2012

  • Разработка математической модели гидромеханической схемы методом прямой аналогии. Составление схемы гидромеханической системы. Составление системы дифференциальных уравнений по эквивалентной схеме. Определение основных параметров математической модели.

    курсовая работа, добавлен 11.11.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.