Об одной задаче со смещениями в граничных условиях
Задача для классического линейного гиперболического уравнения в прямоугольной характеристической области, ее решение с помощью редукции к системе уравнений Фредгольма второго рода, разрешимость которой устанавливается на основе метода априорных оценок.
Подобные документы
Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.
конспект урока, добавлен 07.04.2014Решение первой краевой задачи для вырождающегося дифференциального уравнения с частными производными при заданных условиях. Нахождение компонентов решения задачи, интегрирование неравенства. Области определения данной функции, ее частные случаи.
статья, добавлен 31.05.2013Изучение вопроса разрешимости задачи для нелинейного гиперболического уравнения на плоскости с двумя нелинейными краевыми условиями. Доказательство существования и единственности обобщенного решения задачи с двумя нелинейными граничными условиями.
статья, добавлен 31.05.2013Новые признаки разрешимости квазилинейных краевых задач для абстрактных функционально-дифференциальных уравнений с необратимой линейной частью и систем квазилинейных операторных уравнений. Разрешимость задач для уравнения с отклоняющимся аргументом.
автореферат, добавлен 17.12.2017Вычислены матрицы Римана первого и второго рода гиперболической системы уравнений теплопроводности. Построено решение задачи Коши для гиперболической системы уравнений. Решение задачи граничного управления процессом теплопереноса в однородном теле.
автореферат, добавлен 17.12.2017Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.
контрольная работа, добавлен 26.11.2012Численно-аналитическое моделирование процессов теплопроводности. Рассмотрение несимметричных граничных условий первого и второго рода. Методика аппроксимационного преобразования уравнений в частных производных к системе дифференциальных уравнений.
статья, добавлен 25.08.2016Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.
лекция, добавлен 01.09.2017Понятие о комплексном решении однородного линейного дифференциального уравнения. Решение задачи для линейного неоднородного дифференциального уравнения с постоянными коэффициентами с правой частью имеющей вид полинома и в случае различных корней.
контрольная работа, добавлен 04.12.2014- 35. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Доказательство единственности положительного радиально-симметричного решения задачи Дирихле в кольцевой области для одного класса нелинейных уравнений второго порядка. Анализ вопросов существования положительного решения, его поведения, априорных оценок.
статья, добавлен 31.05.2013Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.
учебное пособие, добавлен 05.05.2015Общая характеристика линейной одномерной модели нестационарного процесса теплопроводности. Знакомство с основными особенностями решения граничных обратных задач теплопроводности на основе параметрической оптимизации. Рассмотрение уравнения Фурье.
статья, добавлен 28.01.2020Нахождение обратной матрицы с помощью метода жордановых исключений. Постановка задачи линейного программирования. Нахождение оптимального опорного плана. Определение двойственной задачи к общей задаче линейного программирования. Описание метода Штифеля.
учебное пособие, добавлен 12.05.2015Задача Коши и дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Интегрирование линейного однородного уравнения. Теорема существования и единственности решения дифференциального уравнения. Частные случаи уравнений II порядка.
контрольная работа, добавлен 31.03.2015Интегрирование линейного дифференциального уравнения с помощью степенных рядов, метод неопределенного коэффициента. Синтез управления не более, чем с одним переключением в управляемой системе второго порядка. Малые возмущения системы линейных уравнений.
курсовая работа, добавлен 08.06.2014Классификация и основные типы линейных интегральных уравнений. Решение уравнения Вольтерра и Фредгольма. Свойства характеристических чисел и собственных функций самосопряженного интегрального уравнения. Билинейное разложение для самосопряженных ядер.
курс лекций, добавлен 08.11.2012Рассмотрена задача о дифракции антиплоских волн сдвига (SH-волн) на неподвижной жесткой полосе, скрепленной с поверхностью упругого полупространства. Порядок решения парных интегральных уравнений и интегральных уравнений Фредгольма второго рода.
статья, добавлен 11.07.2018Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Решение обратной задачи гравиметрии как актуальна задача в современных условиях. Особенности интегрального уравнения Фредгольма первого рода, которое является некорректной задачей. Основные математические аспекты решения двумерной задачи гравиметрии.
статья, добавлен 30.01.2017Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.
задача, добавлен 20.01.2014- 47. Решение СЛАУ
Решение системы линейных алгебраических уравнений (СЛАУ) четырьмя способами: с помощью формул Крамера; обратной матрицы; метода замещения (способом последовательных приближений) и классического метода Гаусса (последовательного исключения переменных).
задача, добавлен 15.01.2014 Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
статья, добавлен 31.05.2013Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.
статья, добавлен 27.05.2018Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.
методичка, добавлен 27.04.2016