Основы теории случайных величин

Важнейшие классы и методы случайных процессов. Конечномерные распределения винеровского процесса. Дискретная цепь Маркова. Евклидово пространство случайных величин. Корреляционная теория. Теорема Фубини. Производная и интеграл. Канонические разложения.

Подобные документы

  • Закон распределения случайной величины по статистическим данным. Особенности графического оформления и числовые характеристики статистических рядов, их сглаживание и выравнивание. Проверка правдоподобия гипотез. Понятие о системе случайных величин.

    контрольная работа, добавлен 01.03.2012

  • Рекомендации по выполнению контрольного задания на предмет поиска возможных выборочных распределений, построения закона распределения случайных величин, расчета доверительной вероятности и оценки значимости рисков. Требования к оформлению работы.

    методичка, добавлен 03.10.2017

  • Расчет числовых характеристик биноминального распределения. Распределение случайной величины по закону Пуассона. Сопоставление дисперсии случайно величины, распределенной по закону Пуассона, с математическим ожиданием. Нормальный закон распределения.

    лекция, добавлен 18.03.2014

  • Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.

    дипломная работа, добавлен 07.12.2012

  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций, добавлен 23.04.2016

  • Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.

    реферат, добавлен 25.02.2011

  • Числовые характеристики случайных величин. Понятие и свойства математического ожидания и дисперсии. Равномерный закон распределения. Определение непрерывной случайной величины. Область определения функции. Графическое изображение вариационного ряда.

    доклад, добавлен 26.03.2012

  • Рассмотрение примеров расчета вероятности заданного события. Определение вероятности попадания в мишень, выбора обуви первого и второго сорта, вычисление последней цифры телефона. Изучение закона распределения случайных величин рядом распределения.

    контрольная работа, добавлен 07.01.2014

  • Функция, определенная на элементах пространства элементарных событий. Дискретные и непрерывные случайные величины. Определение дифференциального закона распределения. Числовые характеристики случайных величин. Использование квантилей распределений.

    лекция, добавлен 18.03.2014

  • Виды распределения, его законы. Дискретное и непрерывное распределение. Свойства случайных величин. Эмпирические функции распределения. Параметры функции нормального распределения. Вычисление выравнивающих частот кривой нормального распределения.

    реферат, добавлен 29.03.2018

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Изучение видов ошибок измерений. Оценка точности функции измеренных величин. Вычисление надежного значения величины, полученного из ряда измерений. Основные свойства случайных ошибок. Установление критериев для оценки точности результатов измерений.

    презентация, добавлен 21.04.2015

  • Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.

    лабораторная работа, добавлен 15.05.2020

  • Содержание и особенности практического применения закона распределения случайной величины. Понятие математического ожидания и порядок его вычисления. Структура и свойства дисперсии. Начальный и центральный, корреляционный момент случайной величины.

    реферат, добавлен 05.03.2016

  • Формулы Бейеса и Бернулли. Понятие непрерывной случайной величины. Биноминальное распределение и распределение Пуассона. Числовые характеристики дискретных случайных величин. Условные законы распределения, линейная регрессия. Закон больших чисел.

    курс лекций, добавлен 18.10.2017

  • Характеристика понятия и сущности методики оценки параметров распределения, проверки гипотез, изучение системы случайных величин: корреляции, регрессии. Анализ особенностей статистического оценивания. Характеристика выборочного коэффициента корреляции.

    курсовая работа, добавлен 21.09.2017

  • Математическое ожидание, дисперсия, доверительная вероятность. Общая схема метода Монте-Карло, который можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Вычисление интегралов методом Монте-Карло.

    курсовая работа, добавлен 28.04.2012

  • Евклидово пространство – линейное пространство с некоторым образом введенной операцией "скалярного произведения". Неравенство Коши–Буняковского. Ортогональные и ортонормированные системы векторов. Ортогональное дополнение к линейному подпространству.

    контрольная работа, добавлен 01.07.2012

  • Сущность метода Монте-Карло и моделирование случайных величин. Оценка погрешности метода Монте-Карло. Минимальные системные требования и описание программы для вычисления определённых интегралов методом Монте-Карло. Примера решения контрольной задачи.

    курсовая работа, добавлен 23.11.2015

  • Рассмотрение подходов к изучению моделирования. Методы имитации случайных величин. Этапы построения математической модели. Проблема оценки внешней среды. Характеристика особенностей имитационного моделирования. Анализ аспектов генетических алгоритмов.

    реферат, добавлен 18.01.2014

  • Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.

    лекция, добавлен 18.03.2014

  • Нормальный закон на плоскости. Вероятность попадания в прямоугольник со сторонами, параллельными главным осям рассеивания. Эллипсы рассеивания, приведение нормального закона к каноническому виду. Вероятность попадания в область произвольной формы.

    курсовая работа, добавлен 13.08.2015

  • Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.

    курсовая работа, добавлен 19.06.2015

  • Энтропийное значение погрешности. Оценка характеристик случайных погрешностей по экспериментальным данным. Равноточные измерения, порядок действий при обработке результатов. Нахождение коэффициента доверительного или энтропийного интервала погрешности.

    контрольная работа, добавлен 28.10.2014

  • Смысл математического ожидания и дисперсии в случае дискретных случайных величин. Вид формул для их нахождения путем замены. Функция распределения непрерывной случайной величины. Расчет плотности вероятности, а также вероятности попадания на участок.

    презентация, добавлен 01.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.