Реализация классификатора групп в социальных сетях с помощью рекуррентных и сверточных нейронных сетей
Рассмотрение проблемы классификации сообществ в социальной сети. Применение рекуррентных и сверточных нейронных сетей для классификации групп пользователей по степени радикальности. Методы предварительной обработки данных для построения классификаторов.
Подобные документы
Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.
статья, добавлен 26.04.2019Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Разработан и описан алгоритм процесса конвертирования поступающих в программный комплекс исполняемых файлов в черно-белые изображения, позволяющий сформировать собственный набор данных для обучения нейронной сети на основе полученных изображений.
статья, добавлен 16.05.2022Методы анализа социальных сетей для поиска групп пользователей нового программного продукта. Требования к целевой аудитории пользователей программного продукта. Оценка достоинств и недостатков продукта по сравнению с программным обеспечением конкурентов.
статья, добавлен 19.06.2018Возможности современных информационных технологий и Интернета. Разработка клиент-серверной архитектуры построения больших искусственных нейронных сетей. Идентификация, аутентификация пользователей и защита информации в системе дистанционного обучения.
статья, добавлен 27.05.2018Основные теории искусственных нейронных сетей. Место нейронных сетей в эволюции интеллектуальных систем управления. Преимущества применения нейроинформационных технологий при решении многих как нетрадиционных, так и традиционных задач управления и связи.
книга, добавлен 09.09.2012Применение интеллектуальных средств защиты информации в системах обнаружения атак. Задачи классификации в экспертных системах. Вероятностные методы решения задачи классификации. Применение нейронных сетей в задачах классификации и кластеризации.
статья, добавлен 23.03.2018Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
дипломная работа, добавлен 28.11.2019Процесс формирования параметров изменяемого пользовательского интерфейса. Возможность применения методов нейронных сетей для обработки характеристик и классификации категорий пользовательских интерфейсов; структура искусственной нейронной сети.
статья, добавлен 08.03.2019Понятия, определения нейронных сетей и классификации изображений. Методы оптимизации работы нейронной сети. Описание интерфейса программной реализации решения задачи классификации изображений. Решение задачи распознания изображений реальных объектов базы.
дипломная работа, добавлен 06.06.2015Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.
контрольная работа, добавлен 06.12.2015Нейронные сети как аппаратные или программные средства, моделирующие работу человеческого мозга. Анализ проблем создания компьютерных систем речевого общения. Рассмотрение особенностей применения нейронных сетей для решения задач распознавания речи.
доклад, добавлен 12.12.2012Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009Методы интеллектуального анализа данных, основанных на применении искусственных нейронных сетей, их ключевая особенность. Понятие репрезентативности исходных данных. Формирование обучающей выборки и оценка достоверности данных таблиц базы данных.
статья, добавлен 30.05.2017Искусственный интеллект и нейронные сети. Особенности использования искусственных нейронных сетей в системах управления. Системы адаптивного управления, использующие эталонную модель Ляпунова. Архитектура построения нейросетевых систем управления.
отчет по практике, добавлен 09.02.2019Характеристики нейронных многослойных сетей. Математические эквиваленты нейрофизиологических понятий параметрической и топологической пластичности. Связь степени параметрической пластичности нейронной сети с числом независимо распознаваемых образов.
статья, добавлен 17.01.2018Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.
реферат, добавлен 15.03.2009- 68. Нейронные сети
Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.
реферат, добавлен 20.02.2009 Общие сведения о сетях. Реализация распределенной обработки данных. Три основных класса сетей: глобальные, региональные и локальные. Достоинства и недостатки одноранговых сетей и сетей с выделенным сервером. Топологии "звезда", "кольцо", "общая шина".
курсовая работа, добавлен 30.10.2012Этапы становления и развития нейронных сетей. Головной мозг, нейронные сети и компьютеры. Программные и аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей. Способы распознавания образов предметов.
реферат, добавлен 17.05.2013Задача прогнозирования временных рядов как одна из классических задач, эффективно решаемых с помощью нейронных сетей. Особенности работы с пакетом Neural Network Wizard (создание модели нейронной сети). Правила распознавания цифр на базе нейронной сети.
лабораторная работа, добавлен 20.02.2012Разработка системы прогнозирования профессиональных интересов абитуриентов на основе данных социальных сетей. Сравнение информативности контента и личных сообщений, размещенных на страницах пользователей сети "ВКонтакте". Методы классификации текстов.
статья, добавлен 06.04.2021Рассмотрение подходов, используемых при моделировании информационных вычислительных сетей. Моделирование вероятности перехода узла сети в перегруженное состояние. Рассмотрение образования групп перегруженных узлов в сетях со случайной топологией.
статья, добавлен 15.08.2020Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Рассмотрение методов прогнозирования нейронных сетей. Решение задачи обзора методов оконного прогнозирования на объеме страховых взносов. Изучение методов одношагового, многошагового прогнозирования. Применение метода окон для генерации обучающей выборки.
статья, добавлен 24.03.2018