Deep learning approaches for Big Data analytics: opportunities, issues and research directions
Deep learning is one of the most active research fields in machine learning community. It has gained unprecedented achievements in fields such as computer vision, natural language processing and speech recognition. Сhallenges posed by Big Data analysis.
Подобные документы
The concept and structure, as well as the laws of functioning of the Unified Modeling Language, history of its development. Precedents and conditions of effective use case diagrams. Research of a example of computer simulation and evaluation of results.
презентация, добавлен 05.04.2016The creating and operating an arbitrary Database in computer mathematics. The conceptual design acts as the construction of an information model of the subject area of the. The definition of the objects of the subject area of the DB, their properties.
статья, добавлен 17.02.2021The comparative analysis of multiple commonly used approaches of the analysis of system logs, and streaming data massively generated by company IT infrastructure with an unattended anomaly detection feature. Hierarchical temporary memory algorithms.
статья, добавлен 18.09.2020- 54. Big Data
Определение термина "Big Data" и его применение в работе с информацией огромного объема и разнообразного состава. Определение основных источников получения компаниями информации. Методики анализа массивов данных и технологии Big Data в разных отраслях.
курсовая работа, добавлен 28.09.2015 Comparison of several common approaches to the analysis of system logs and streaming data generated en masse by the company's IT infrastructure. Characteristics of model-based anomaly search algorithms and hierarchical temporary memory algorithms.
статья, добавлен 28.05.2021Learning English for working with the computer and other information technology. Working with computer programs, discussion of problems and project planning. Use for intermediate level students and above. Using software: useful verbs, the control panel.
учебное пособие, добавлен 28.05.2015Application of sorting to organize large data arrays. Data sorting algorithms. Study of the algorithm for parallel hyperfast sorting of data arrays in the C# programming language. Development of flow graph and program code. Using the test program.
статья, добавлен 08.06.2024Задачи Data Mining: описательные и предсказательные, классификации и регрессии, поиска ассоциативных правил, кластеризации. Практическое применение Data Mining. Особенности нечеткой логики, виды физической неопределенности. Процесс обнаружения знаний.
презентация, добавлен 27.04.2023Преимущества смешанного обучения. Формы, модели и технологии обучения. Эффективность использования информационных технологий. Интернет и образование. Синхронные и асинхронные инструменты коммуникации. Сравнение очной формы обучения и E-learning.
учебное пособие, добавлен 28.03.2011The data collection algorithm to systematically track gender equality metrics across universities. The advantages of leveraging advanced scraping and analysis techniques to gather nuanced insights from diverse online data sources like university websites.
статья, добавлен 12.12.2024Analysis of the prospects for using artificial intelligence technologies in the field of photo processing. Research of modern technologies and AI methods that are used in processing photo materials. Review of areas of AI use in image processing.
статья, добавлен 08.06.2024The development and use of new, progressive information technologies based on the widespread use of superproductive and reliable dual-use computer systems and components. Consideration of the problem of the Fourier transform and its application.
статья, добавлен 01.11.2021Історія формування Data Mining, її головні завдання. Порядок формулювань завдань при використанні методів OLAP і Data Mining. Рівні знань, видобутих з даних. Характеристика основних бізнес-додатків: роздрібна торгівля, телекомунікація, страхування.
реферат, добавлен 30.04.2014Мета технології Data Mining - знаходження в даних закономірностей, які не можуть бути знайдені традиційними методами. Види моделей (предиктивні та описові). Використання методів й алгоритмів Data Mining для побудови моделей. Класифікація стадій та фаз.
реферат, добавлен 22.07.2017A novel family of data-driven linear transformations, aimed at finding low dimensional embeddings of multivariate data, in a way that optimally preserves the structure of the data. The PCA and Fisher’s LDA are the special members in this transformation.
статья, добавлен 08.02.2013The concept of human-machine interface. Three types of human-machine interface. The picture of human-machine interaction. The history of the development of human-computer interaction. The first generation of computers Areas and examples of application.
презентация, добавлен 24.11.2016Сущность концепции Blended learning, ее виды. Анализ проекта Visual Math.ru - сервер-платформы написанной на языке программирования JavaScript для просмотра в онлайн режиме лекций с визуальными модулями. Концепция библиотеки Grafar и ее критика.
курсовая работа, добавлен 27.08.2016The weather forecast from a scientific point of view as one of the most complex problems of atmospheric physics. General characteristics of the big data forecasting system using the similarity method. Features of using big data for digitization.
дипломная работа, добавлен 13.07.2020A General idea on the basis of information contained in cryptographic systems. Feature encryption standard "Rijndael". The principles of encoding data with a public key algorithm RSA. Safety standards models of information flow in computer programs.
книга, добавлен 08.03.2014The prerequisites for the emergence and formation of areas of computer science that explores the possibilities of electronic encryption devices using large-scale integrated computer circuits. The structure of cryptographic techniques to explore data.
книга, добавлен 08.03.2014Possibilities and features of artificial neural networks. Areas of practical application of artificial neural networks. Voice interface distribution and visual serach. Learning neural networks. The following visualization. Direct error propagation.
презентация, добавлен 06.02.2019The methods for adaptive, knowledge-based learning, such as online incremental feature selection, spiking neural networks, adaptive data and model integration, and artificial life systems, particle swarm optimisation, ensembles of evolving systems.
книга, добавлен 09.04.2013Characteristics of the model research cyber-physical systems in industrial production. Description of the hardware installation process and software environment. Consideration of modern approaches to modeling distributed software and semantic data.
статья, добавлен 23.02.2016Використання математичних концепцій в системах e-learning. Аналіз методів добору навчальних матеріалів на основі марковських процесів прийняття рішень у просторі основних станів. Сутність інтегральних моделей, які дозволяють враховувати часовий фактор.
статья, добавлен 25.10.2016Review of Basic Statistics With SPSS. Data Coding and Exploratory Analysis. Selecting and Interpreting Inferential Statistics. Several Measures of Reliability. Exploratory Factor Analysis and Principal Components Analysis. Multiple Linear Regression.
книга, добавлен 09.04.2013