Комбинаторика и бином Ньютона
Понятие вероятности и зарождение науки о закономерности случайных явлений. Достоверное, невозможное и случайное событие как первичное понятие теории вероятностей. Комбинаторные конфигурации, используемые для формулировки и решения комбинаторных задач.
Подобные документы
Сущность и разновидности случайных событий. Классическое определение вероятности и его ограниченность, а также характерные свойства. Относительная частота события, е определение и оценка, влияющие факторы. Исследование примеров вычисления вероятностей.
контрольная работа, добавлен 30.03.2017Основное положение теории вероятности – науки, занимающейся изучением закономерностей массовых случайных явлений. Возможные результаты единичной операции, или испытания. Основные категории теории вероятности. Описание пространства элементарных событий.
реферат, добавлен 16.06.2015Комбинаторика как раздел дискретной математики, изучающий дискретные объекты, множества и отношения на них. История термина "комбинаторика", элементы этой области математики. Примеры решения комбинаторных задач: перестановки, размещения, сочетания.
контрольная работа, добавлен 09.01.2019Теория вероятностей как математическая наука, позволяющая по вероятностям одних случайных событий находить возможность появления других, связанных каким-либо образом с первыми. Периодизация истории науки и ее применения в естествознании и технике.
контрольная работа, добавлен 20.11.2013Типы событий: достоверные, невозможные, случайные. Понятие, предмет исследования комбинаторики, история возникновения и развития соответствующего научного направления. Применение методов теории вероятностей в разных сферах. Основные комбинаторные задачи.
реферат, добавлен 03.05.2019Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017Характеристика теории случайных процессов как науки, изучающей закономерности случайных явлений и динамики их развития. Особенности случайных функций, сечения, математического ожидания и реализации случайного процесса, его классификация и формулы.
доклад, добавлен 23.04.2014История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.
реферат, добавлен 12.11.2016Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
методичка, добавлен 27.05.2016Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.
учебное пособие, добавлен 29.10.2013Построение комбинаторной теории Лейбницем. Использование ее при решении задач алгебры, геометрии. Интеграция комбинаторики в современную математику. Правила суммы и умножения. Описание урновой схемы как одной из простейших моделей теории вероятностей.
контрольная работа, добавлен 17.06.2014Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
методичка, добавлен 05.09.2012Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.
методичка, добавлен 16.05.2016Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.
реферат, добавлен 22.01.2013- 42. Бином Ньютона
Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.
презентация, добавлен 11.05.2016 История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.
реферат, добавлен 08.06.2017Предмет, определение, понятия и основные теоремы теории вероятности. Формулы комбинаторики, Байеса, Бернулли и полной вероятности. Классификация событий и операции над ними. Определение вероятности случайного события и повторных независимых испытаний.
контрольная работа, добавлен 01.04.2016Операции над событиями. Частость наступления события. Аксиоматика теории вероятности. Построение вероятностного пространства. Классическое определение вероятности. Обоснование формулы условной вероятности в общем случае. Формула сложения вероятностей.
реферат, добавлен 27.11.2015Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.
шпаргалка, добавлен 09.09.2011Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.
курсовая работа, добавлен 19.10.2014Эволюция представлений о везении как вероятности наступления события, философская категория фортуны. Оценка вероятности благоприятного события и его изменение во времени. Г. Гардано, Пьер де Ферма и Блеиз Паскаль как основоположники теории вероятностей.
статья, добавлен 29.03.2019Общее понятие случая и события в теории вероятностей. Порядок оценки вероятности события по относительной доле благоприятных случаев. Вероятность достоверного события как вероятность события, которое всегда происходит, полагается равной единице.
презентация, добавлен 01.11.2013- 50. Комбинаторика
Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.
контрольная работа, добавлен 17.12.2011