Кривые, заданные в полярных координатах
Полярная система координат на плоскости. Особенности построения кривых, заданных полярными уравнениями. Зависимость между полярными и декартовыми координатами. Построение первого витка спирали Архимеда. Применение логарифмической спирали в технике.
Подобные документы
Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.
курс лекций, добавлен 22.11.2015Построение уравнений прямой с направляющим и нормальным вектором. Условия перпендикулярности вектора. Построение уравнения прямой с угловым коэффициентом. Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.
презентация, добавлен 06.09.2017Определение положения точки в пространстве. Правая декартова, полярная и косоугольная системы координат. Способы измерения дуг. Определение координат точки в пространстве, окружности и ее радиуса. Построение сферической и цилиндрической системы координат.
презентация, добавлен 12.10.2012Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.
курсовая работа, добавлен 21.05.2012Задачи визуализации математических функций, имеющих в некоторых точках разрыв первой производной. Принципы выбора интерполяционных методов построения кривых с изломами в заданных точках. Информационно-алгоритмический способ сплайн-интерполяции кривых.
статья, добавлен 15.12.2021Теория конических сечений. Задача о квадратуре сегмента параболы. Исследование геометрических свойств кривых. Декартов лист, кривые третьего порядка. Уравнение строфоиды в полярной системе координат. Овалы Кассини, улитка Паскаля, лемниската Бернулли.
реферат, добавлен 15.10.2012Определение кривых второго порядка на плоскости как линий пересечения кругового конуса с плоскостями, не проходящими через его вершину. Характеристика эллипса с помощью декартовой системы координат. Понятие и основные свойства гиперболы и параболы.
лекция, добавлен 25.01.2011Общие аксиомы конструктивной геометрии, методы решения элементарных геометрических задач на построение на плоскости. Методы геометрических преобразований: симметрия, вращение, гомотетия, инверсия. Построение отрезков, заданных простейшими формулами.
курсовая работа, добавлен 12.01.2013Зависимость типа кривой от параметра с помощью инвариантов: нахождение фокусов, директрис, эксцентриситета и асимптот. Исследование формы поверхности методом сечений и построение полученного. Построение поверхности в канонической системе координат.
курсовая работа, добавлен 19.11.2010Конечные суммы и их свойства, декартовая и полярная система координат. Комплексные числа и понятие многочлена. Проекция вектора и ее свойства, аналитическая геометрия на плоскости. Канонические уравнения линий второго порядка, матрицы и действия над ними.
курс лекций, добавлен 20.08.2017Построение прямой и запись уравнением этой прямой в отрезках. Рассмотрение взаимного расположения прямых на плоскости. Определение полярной системы координат и выявление ее связи с прямоугольной декартовой. Нахождение угла между двумя заданными прямыми.
лекция, добавлен 26.01.2014Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.
презентация, добавлен 02.03.2014Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
курс лекций, добавлен 10.09.2016Рассмотрение алгоритма полного исследования функции, теоретических результатов по каждому пункту алгоритма. Разбор стандартных примеров исследования функций и построения графиков. Определение особенностей построения параметрически заданных кривых.
методичка, добавлен 14.09.2015Общие свойства алгебраических кривых третьего порядка. Краткие сведения из истории развития учения о кривых. Классификация Ньютона алгебраических кривых третьего порядка. Некоторые замечательные кривые третьего порядка. Декартов лист и циссоида Диоклеса.
курсовая работа, добавлен 28.03.2016Описание построения и расчет формул основных математических кривых: декартов лист, лемниската Бернулли, логарифмическая спираль, спираль Архимеда, циклоида, эпициклоида, гипоциклоида, дельтоида, астроида, овал Кассини, строфоида, трактриса, кардиоида.
курсовая работа, добавлен 04.02.2014Определение длины ребер и угла меду ними при заданных координатах вершины пирамиды. Вычисление пределов, без использования правила Лопиталя. Вычисление производных заданных функций, а также порядок построения графика. Расчет неопределенных интегралов.
контрольная работа, добавлен 15.05.2014Анализ распространенных способов конструирования технических контуров. Зависимость эксплуатационных характеристик контуров от геометрических свойств кривых. Некоторые кривые, используемые в практике конструирования. Модель конструируемых контуров.
статья, добавлен 26.10.2021- 45. Золотые фигуры
Особенности построения золотого треугольника. Анализ прямоугольника, у которого отношение смежных сторон дает пропорцию Фидия. Спираль Фибоначчи как интерпретация арифметически невозможной спирали золотого сечения, у которой нет ни конца, ни начала.
реферат, добавлен 26.11.2012 - 46. Плоские кривые
История изучения плоских кривых. Особенности формы кривой и способов ее образования. Классификация плоских кривых. Канонические уравнения эллипса, гиперболы и параболы, свойства кривых, изучаемые в 9–11 классах. Цели и задачи факультативных занятий.
дипломная работа, добавлен 22.04.2011 Действия над векторами. Декартова прямоугольная система координат, понятие базиса. Уравнение плоскости в пространстве. Нахождение начальной точки и направляющего вектора прямой. Кривые линии II порядка: парабола и гипербола. Основные теоремы о пределах.
шпаргалка, добавлен 14.01.2010- 48. Кривые линии
Способы образования кривых линий как траекторий последовательных положений движущейся точки. Проведение касательных и нормалей к плоским кривым. Кривые линии, построенные при помощи центроид - рулетты, их виды. Примеры замечательных плоских кривых линий.
контрольная работа, добавлен 21.02.2013 Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
курс лекций, добавлен 23.10.2013Построение в прямоугольной системе координат заданного треугольника. Нахождение внутреннего угла треугольника. Составление уравнения медианы и уравнения высоты. Вычисление производных заданных функций. Исследование заданных функций, построение графика.
контрольная работа, добавлен 19.10.2012