Функции нескольких переменных. Нелинейное программирование

Частные производные функции нескольких переменных. Градиент функции, касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных. Метод множителей Лагранжа. Решение задач нелинейного программирования с двумя переменными.

Подобные документы

  • Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.

    презентация, добавлен 09.07.2015

  • История зарождения и создания линейного программирования. Разработка симплекс-метода и рассмотрение задач отыскания условного экстремума функции. Графический способ решения различных задач линейного программирования, изображение геометрических условий.

    курсовая работа, добавлен 04.04.2011

  • Основные недостатки существующих методов определения фильтрационных параметров. Метод модулирующих функций (М-метод), его сущность. Определение постоянных и переменных коэффициентов в дифференциальных уравнениях. Типичный график модулирующей функции.

    статья, добавлен 10.07.2013

  • Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.

    контрольная работа, добавлен 17.02.2011

  • Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.

    контрольная работа, добавлен 18.12.2013

  • Регрессионный анализ как статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную. Индекс корреляции и коэффициент детерминации. Методы наименьших квадратов. Пути решения системы нормальных уравнений.

    практическая работа, добавлен 07.11.2014

  • Для различных приложений функций нескольких переменных построен алгебраический подход к построению многочленов, формулы которых содержат символьные переменные. Примеры демонстрируют эффективность и широкий охват решаемых научно-технических задач.

    статья, добавлен 08.05.2021

  • Монотонность функции. Исследование стационарных точек. Локальный и глобальный экстремум. Выпуклость и перегибы графика функции. Интерполяция и аппроксимация функций. Интерполяционный полином Лагранжа. Формула Тейлора. Понятие об эмпирических формулах.

    реферат, добавлен 17.01.2011

  • Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.

    контрольная работа, добавлен 17.01.2018

  • Вычисление неопределенного интеграла. Изображение фигуры, ограниченной параболой и прямой, определение её площади. Исследование сходимости степенного ряда на концах интервала. Применение достаточного признака экстремума функции независимых переменных.

    контрольная работа, добавлен 07.04.2017

  • Определение точек условного экстремума, экстремальные значения функции. Порядок, принципы решения задач квадратичного программирования. Вычисление числа взлетно-посадочных полос для самолетов с учетом заданной вероятности ожидания. Решение матричных игр.

    контрольная работа, добавлен 18.03.2014

  • Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.

    лекция, добавлен 15.11.2017

  • Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.

    контрольная работа, добавлен 27.08.2013

  • Введение дополнительных переменных. Разделение области возможных значений переменных и параметров. Вспомогательные преобразования, приводящие к упрощению выражений. Применение классических формул. Несколько примеров решения задач описанными методами.

    контрольная работа, добавлен 08.02.2011

  • Характеристика значения оптических плотностей для плашек после сканирования при разных значениях яркости. Определение необходимого условия экстремума функции многих переменных, которое приводит к системе уравнений. Расчет задачи в матричном виде.

    контрольная работа, добавлен 23.09.2014

  • Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.

    контрольная работа, добавлен 26.04.2012

  • Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.

    дипломная работа, добавлен 26.07.2018

  • Осуществление приближенных вычислений с помощью полного дифференциала функции одной и двух переменных. Вычисление приближенно, заменяя приращения функции ее дифференциалом. Приведение формул нахождения абсолютной и относительной погрешности вычислений.

    контрольная работа, добавлен 09.04.2015

  • Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.

    лекция, добавлен 07.07.2015

  • Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.

    реферат, добавлен 03.10.2012

  • Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.

    контрольная работа, добавлен 04.12.2011

  • Понятие производной, геометрический и физический смысл. Правила дифференцирования. Производные высших порядков. Приложение производной при исследование функции. Возрастание, убывание, экстремум функции. Применение производной к исследованию функции.

    учебное пособие, добавлен 06.06.2010

  • Описание свойств объясняющих переменных в линейной эконометрической модели. Статистическая информация о реализациях переменной. Вектор и матрица коэффициентов корреляции. Исключение квазинеизменных переменных. Метод показателей информационной ёмкости.

    презентация, добавлен 19.01.2015

  • Постановка и графический метод решения задач линейного программирования с двумя переменными. Построение математических моделей. Особенности симплексного метода решения задач линейного программирования, его основные положения, алгоритм, применение.

    курсовая работа, добавлен 22.04.2011

  • Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.

    контрольная работа, добавлен 10.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.