Практическое применение теорем о площадях простейших многоугольников
Измерение площадей многоугольников. Равенство многоугольников с равными площадями. Теорема о точке пересечения медиан. Свойство средней линии треугольника. Теорема о площади многоугольника, все стороны которого находятся в точках целочисленной решетки.
Подобные документы
- 101. Оригами в геометрии
История происхождения, распространения оригами. Применение техники оригами, исследование возможностей применения оригами для решения геометрических задач и доказательство теорем. Сравнительные итоги срезов по изучению теоремы, изучение свойств биссектрис.
презентация, добавлен 16.11.2019 Построение наглядных геометрических моделей, связанных с характеристиками некоторых элементарных частиц. Вычисление площади многоугольника, расположенного на целочисленной решётке. Изучение особенностей моделей нейрона, гиперона, мезона, бариона, кварка.
статья, добавлен 04.05.2012Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.
контрольная работа, добавлен 15.04.2016Математическая индукция как способ математического доказательства, роль индуктивных выводов в экспериментальных науках. Интерпретация данных в зависимости от выбранной аксиоматики. Полная и неполная индукция, их применение для доказательства теорем.
реферат, добавлен 02.03.2013- 105. Квадратные уравнения
Развитие квадратных уравнений в Древнем Вавилоне, Индии, Европе в XII-XVII вв. Виды квадратных уравнений - полные и неполные, их отличительные признаки и специфика, порядок разрешения. Теорема Виета и обратная ей. Применение квадратных уравнений.
презентация, добавлен 10.11.2010 Определение основных понятий непрерывности функции в точке. Расчет величин прироста аргумента. Арифметические действия элементарных функций. Понятие гиперболических функций и их формулы. Множество и его значение. Точка разрыва и теорема непрерывности.
лекция, добавлен 26.01.2014Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.
реферат, добавлен 01.10.2014Построение линии пересечения двух поверхностей в частном и в общем случаях. Характеристика особого случая построения линии пересечения двух поверхностей. Особенности процесса построения линии пересечения поверхностей способом секущих плоскостей.
лекция, добавлен 02.04.2019Описание аналога теоремы Какутани о неподвижных точках многозначного отображения в теории множеств с самопринадлежностью. Суть рекомбинации товаров при производстве новых товаров. Совпадение видов неподвижных точек с действительной структурой экономики.
статья, добавлен 26.04.2019История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
реферат, добавлен 08.05.2012Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
реферат, добавлен 12.09.2010Алгоритм построения пересечения двух поверхностей. Рассмотрение построения линии пересечения трехгранных призмы и пирамиды. Способы построения линии пересечения криволинейной поверхности с плоскостями (гранями многогранника) и с прямыми (его ребрами).
лекция, добавлен 24.07.2014Понятие эвристики как метода научного познания, особенности ее применения в математике. Понятие доказательства в математике и его особенности, применение для его построения эвристических логических подходов. Эвристический подход при доказательстве теорем.
курсовая работа, добавлен 19.02.2012- 114. Оригами и геометрия
Общее понятие об оригами, его применение в различных сферах жизни: для украшения праздничного стола, упаковки подарков и создания одежды. Методы решения задач с помощью оригаметрии. Основные аксиомы, доказательство теорем и примеры решения задач.
презентация, добавлен 16.01.2017 Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.
курс лекций, добавлен 30.07.2017- 117. Пространство Rn
Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.
курсовая работа, добавлен 17.01.2011 Теоретическое исследование некоторых обобщённых модулей гладкости типа Якоби и доказательства прямой и обратной теорем теории приближений. Вычисления обобщённых модулей гладкости некоторых не периодических функций с помощью теорем Леберга, Минковского.
дипломная работа, добавлен 11.01.2011Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.
лекция, добавлен 29.09.2013- 120. Теория вероятности
Применение локальной теоремы Муавра-Лапласа при решении задач. Составление закона распределения случайной величины, определение математического ожидания, дисперсии. Вычисление средней квадратической ошибки выборки. Построение эмпирических линий регрессии.
задача, добавлен 16.10.2017 Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.
контрольная работа, добавлен 05.05.2013- 122. Математика XIX века
Предыстория математической логики. Алгебраическая теория чисел. Социальная и антропометрическая статистика. Вклад К.Ф. Гаусса в теорию вероятностей. Исследования С.Д. Пуассона и О. Коши. П.Г. Лежен-Дирихле и теорема об арифметических прогрессиях.
книга, добавлен 25.11.2013 - 123. Теорема Пифагора
Ознакомление с первоначальной и современной формулировами теоремы Пифагоа. Представление наиболее простого, алгебраического, геометрического и Евклидового методов доказательств теоремы. Определение значения данной теоремы в математических науках.
презентация, добавлен 15.03.2011 Теория делимости, основанная на единственности разложения натурального числа на простые множители (основная теорема арифметики). Доказательство Э. Уайлсом гипотезы Шимуры-Таниямы. Главные особенности применения матриц и теории групп, результаты.
статья, добавлен 03.03.2018- 125. Теория вероятности
Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.
курс лекций, добавлен 29.09.2014