Методы решения тригонометрических уравнений и неравенств

Преобразование и объединение групп общих решений тригонометрических уравнений. Решение уравнений с применением формул тройного аргумента или понижения степени. Функциональные методы решения тригонометрических и комбинированных уравнений, отбор корней.

Подобные документы

  • Множество действительных чисел. Действия над комплексными числами в алгебраической форме. Четность, нечетность, монотонность, периодичность функции. Теоремы о пределах, формулы, свойства логарифмов. Радианная и градусная меры углов. Периодические функции.

    шпаргалка, добавлен 04.05.2011

  • Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.

    презентация, добавлен 18.09.2013

  • Построение регуляризирующих операторов для решения интегральных уравнений и систем уравнений Фредгольма первого рода. Доказательство теорем единственности и получение оценки устойчивости для таких уравнений в разных семействах множеств корректностей.

    автореферат, добавлен 23.11.2017

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.

    курсовая работа, добавлен 11.06.2014

  • Нахождение корней линейных и квадратных уравнений методом последовательных приближений с использованием Microsoft Excel. Решение трансцендентного уравнения с двумя верными десятичными знаками методом проб; комбинированный метод хорд и касательных.

    контрольная работа, добавлен 26.11.2013

  • Решение нелинейных уравнений численными методами: методом половинного деления, методом Ньютона. Определение промежутков, содержащих корни. График функции cos(x)ch(x)+1=0. Создание функции нахождения точных значений корней с помощью программы MatLab.

    лабораторная работа, добавлен 10.10.2015

  • Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.

    методичка, добавлен 03.03.2012

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Место и роль уравнений (неравенств) с параметрами, сводящихся к квадратным в школьном курсе математики. Изучение методов их решения и конструирования. Применение свойств квадратного трехчлена при решении нестандартных заданий (задачи с параметром).

    дипломная работа, добавлен 26.11.2010

  • Решение дифференциальных уравнений с разветвляющимися переменными. Определение и решение однородных дифференциальных уравнений и уравнений в полных дифференциалах. Решение линейных дифференциальных уравнений первого порядка и уравнений Бернулли.

    лекция, добавлен 14.03.2014

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.

    контрольная работа, добавлен 02.12.2012

  • Особенности решения иррациональных уравнений и неравенств стандартного типа и повышенной сложности. Исторические аспекты изучения данного вопроса. Возведение обоих частей уравнений в соответствующую натуральную степень. Введение новых переменных.

    реферат, добавлен 14.04.2010

  • Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.

    контрольная работа, добавлен 06.09.2008

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Скорость решения задачи по математике - условие быстрого усвоения учебного материала, умение быстро анализировать ситуацию достаточно продуктивно. Характеристика основных методик решений возвратных уравнений, которые применяются в школьной практике.

    статья, добавлен 20.07.2021

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.

    презентация, добавлен 21.09.2013

  • Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.

    курсовая работа, добавлен 17.04.2014

  • Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.

    дипломная работа, добавлен 21.09.2016

  • Разработка и анализ методов ускорения расчета и повышения точности результатов численного решения уравнений газовой динамики – уравнений Эйлера и уравнений Навье-Стокса и Рейнольдса, возможности, которые обеспечивает схема DG с точки зрения адаптации.

    автореферат, добавлен 02.03.2018

  • Рассмотрение решения уравнений с двумя переменными, систем уравнений, методов решения систем, таких как метод подстановки, сложения, графический, метод введения новых переменных, определителей второго и третьего порядков и теоремы Кронекера-Капеллы.

    научная работа, добавлен 25.02.2014

  • Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.

    реферат, добавлен 14.12.2010

  • Решение алгебраических, нелинейных и трансцендентных уравнений. Метод половинного деления, простых итераций, касательных и секущих. Численные методы вычисления определенных интегралов. Общая формулировка методов Рунге-Кутты. Строгие оценки погрешности.

    творческая работа, добавлен 26.06.2011

  • Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.

    контрольная работа, добавлен 12.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.