Эволюционный подход к настройке и обучению искусственных нейронных сетей
Исследование особенностей применения эволюционных алгоритмов для настройки структуры и поиска весов связей искусственных нейронных сетей. Анализ вопросов эволюционного поиска топологии искусственной нейронной сети. Кодирование информации о весах связей.
Подобные документы
Сверточная нейронная сеть как тип искусственной нейронной сети с прямой связью. Знакомство с историей и концепцией развития сверточных нейронных сетей. Характеристика результатов программного эксперимента в виде графиков и сгенерированных изображений.
статья, добавлен 30.06.2020Автоматизация проектирования локальных сетей Ethernet и ATM при построении вычислительных сетей, предназначенных для передачи разнородного трафика. Синтез структур Ethernet и ATM с помощью генетических алгоритмов нейронных сетей. Типы коммутации пакетов.
статья, добавлен 06.05.2018Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Рассмотрение и характеристика главных особенностей метода использования искусственных нейронных сетей. Ознакомление со схемой Персептрона. Исследование и анализ основных принципов распознавания образов, которые применяются в вычислительной технике.
контрольная работа, добавлен 26.05.2016Разработка модели обнаружения злоумышленника в информационной системе. Анализ результатов обучения и реализации нейронных сетей на основе персептрона и линейных нейронных сетей в пакете Matlab. Выявление аномального поведения пользователя в системе.
статья, добавлен 30.04.2018Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Решение сложных интеллектуальных задач с помощью искусственных нейронных сетей. Автоматизация и гибридизация генетических алгоритмов аппарата нечеткой логики. Применения метода генетического программирования в селекции и репродукции новых пород деревьев.
статья, добавлен 18.01.2018Анализ моделей адаптивного поведения. Модель эволюционного возникновения коммуникаций в коллективе роботов. Бионическая модель поискового адаптивного поведения. Основные принципы построения модели адаптивного поведения системы на базе нейронных сетей.
дипломная работа, добавлен 07.08.2018Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Разработка облика системы технического зрения для мобильных систем и программного обеспечения системы технического зрения. Исследование применения алгоритмов на основе глубоких нейронных сетей в задаче детектирования объектов дорожного движения.
дипломная работа, добавлен 08.06.2018Важность применения моделей, основанных на применении нейросетевых технологий как инструмента прогнозирования курсовой стоимости ценных бумаг. Потенциальные области применения искусственных нейронных сетей. Некоторые типовые задачи, решаемые с их помощью.
статья, добавлен 01.09.2018Сфера применения искусственных нейронных сетей (ИНС). Использование ИНС в прогнозировании временных рядов. Возможности применения ИНС для моделирования демографической динамики. Прогнозирование динамики численности населения, смертности и рождаемости.
статья, добавлен 16.07.2018Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.
курсовая работа, добавлен 30.11.2009- 115. Нейронные сети
Свойства нейронных сетей, области их применения и классификация. Структура и принципы работы нейронной сети и особенности ее обучения. Нейросетевые системы управления. Разработка нейросевого регулятора с наблюдающим устройством, управление объектом.
реферат, добавлен 08.10.2011 Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Применение мультисенсорных систем в газовом анализе. Получение информации о составе и концентрации отдельных компонентов сложных смесей. Анализ осуществления практической реализации нейросетевых технологий обработки информации программным способом.
статья, добавлен 25.08.2020Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.
лабораторная работа, добавлен 14.12.2019Характеристика понятия образа, проблемы обучения распознаванию образов. Описание истории исследований в области нейронных сетей. Изучение сигнального метода обучения Хебба. Описание структурных схем и алгоритмов нейронных сетей Хопфилда и Хэмминга.
реферат, добавлен 12.06.2015Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023Разработка программного модуля диагностики поведения роторной системы на основе нелинейных авторегрессионных моделей нейронных сетей и алгоритма обучения Левенберга-Марквардта. Применение искусственной нейронной сети в анализе динамических процессов.
статья, добавлен 01.02.2019Описание структуры, возможностей, преимуществ и недостатков локальной сети, сетевых компонентов локальных сетей. Основные элементы сети SDH. Основные топологии связей. Механизмы самовосстановления и схемы резервирования. Формы реализации линейной защиты.
курсовая работа, добавлен 14.12.2014Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.
статья, добавлен 29.05.2017Опыт применения нейронных сетей в экономических задачах. Моделирование эмпирических закономерностей по ограниченному числу экспериментальных и наблюдаемых данных. Табличный метод - основа искусственного интеллекта. Мониторинг банковской системы.
реферат, добавлен 15.03.2009