Меры длины в Древней Руси
Значение в метрических мерах наиболее часто применяемых древнерусских мер длины: сажень, аршин, локоть, пядь, вершок, фут. Известные русские поговорки, связанные с мерами длины Древней Руси. Верста как самая крупная единица длины в Древней Руси.
Подобные документы
Математическая формула для подъемной силы, действующей на единицу длины крыла самолета. Специфические особенности применения системы обыкновенных дифференциальных уравнений первого порядка для определения траектории движения летательных аппаратов.
статья, добавлен 17.11.2021Составление определителя из координат векторов и его вычисление. Решение системы уравнений методом Крамера. Определение длины ребра пирамиды по формуле расстояния между двумя точками. Нахождение координат точки, симметричной относительно прямой.
контрольная работа, добавлен 11.03.2014Рассмотрение становления геометрической алгебры в Древней Греции, ее применения при решении уравнений, доказательстве алгебраических тождеств, при построении фигур. Влияние геометрической алгебры на разрешение математических проблем в арабских странах.
статья, добавлен 26.04.2019Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенные дроби в древней Руси и Древней Греции. История возникновения дробей. Применение дробей в повседневной жизни. Правильные и неправильные обыкновенные дроби.
реферат, добавлен 15.05.2023Разложение общей формулы оберквадратов на множители. "Плохие" и "хорошие" числа. Вычисление разности между двумя последовательными числами. Вычеты по модулю 5 при умножении. Остатки от деления при возведении в степень. Определение наибольшей длины цикла.
презентация, добавлен 16.03.2014Задача на нахождение кратчайшего пути. Определение нижней границы гамильтоновых циклов множества с помощью операции редукции. Изучение процесса разложения матрицы по маршрутным строкам. Определение, изображение оптимальной длины маршрута коммивояжёра.
контрольная работа, добавлен 16.01.2016Решение прикладных задач в области геометрии, механики и физики с использованием определённого интеграла. Вычисление площади криволинейной трапеции. Определение объёма тела, полученного вращением плоской фигуры вокруг оси. Нахождение длины дуги кривой.
контрольная работа, добавлен 09.05.2021Проблемы измерения длины, массы и времени и их решения древними цивилизациями, стандартизация мер в процессе развития международной торговли. Разработка и уточнение эталонных мер: метра, килограмма, секунды, в рамках международной метрической системы СИ.
реферат, добавлен 15.12.2016Поиск структурообразующих логических цепочек с помощью "скользящего окна" переменной длины в бинарных и потоковых последовательностях равновероятных событий. Расчёт и распределение логических цепочек. Алгоритм программного поиска при моделировании.
статья, добавлен 03.03.2018Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.
контрольная работа, добавлен 09.02.2015Нахождение внутреннего угла треугольника с точностью до градуса, длины высоты, опущенной из вершины, точки пересечения высот и координат векторов. Уравнение медианы, проведенной через вершину. Система линейных неравенств, определяющих треугольник.
контрольная работа, добавлен 13.06.2016Анализ изучения важнейшей математической константы, которая выражает отношение длины окружности к ее диаметру. Практическое применение числа "Пи". Проведение исследования современных представлений о культуре. Взаимосвязь пирамиды Хеопса и числа "Пи".
презентация, добавлен 05.11.2019- 38. Замкнутые классы
Класс булевых функций. Определение числа самодвойственных функций. Множество всех наборов длины по отношению к операции предшествования. Теорема о функциональной полноте. Понятия многозначной логики. Дистрибутивность операции max относительно min.
лекция, добавлен 18.10.2013 Основные свойства определенного интеграла. Вычисление площадей плоских фигур, длины дуги кривой, объемов тел, площадей поверхностей. Признаки сравнения для несобственных интегралов первого, второго рода. Формула Ньютона-Лейбница. Интегрирование по частям.
учебное пособие, добавлен 19.12.2013Определение длины ребер и угла меду ними при заданных координатах вершины пирамиды. Вычисление пределов, без использования правила Лопиталя. Вычисление производных заданных функций, а также порядок построения графика. Расчет неопределенных интегралов.
контрольная работа, добавлен 15.05.2014Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательство некоторых основных планиметрических теорем: длины отрезка, коллинеарности трех точек, четырех точек одной окружности, правильного треугольника.
курсовая работа, добавлен 22.04.2011Конструирование геометрического фрактала, обобщающего снежинку Коха. Обоснование конечности площади усложненной снежинки и бесконечности длины любого куска контурной фрактальной кривой. Формулирование проблемы о предполагаемых характерных свойствах.
научная работа, добавлен 28.10.2015- 43. Число "Пи"
"Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".
доклад, добавлен 31.01.2018 Изучение понятия окружности, радиуса, круга, хорды и диаметра. Исследование свойства длины окружности, признаков и свойств касательной, проходящей через одну точку. Характеристика особенностей центрального и вписанного углов, связанных с окружностью.
презентация, добавлен 15.04.2012Решение системы уравнений методом Гаусса. Определение предела и производной функции. Написание уравнения прямой, проходящей через точку параллельно касательной. Определение длины основания треугольника с наибольшей площадью. Построение графика функции.
контрольная работа, добавлен 12.09.2012Применение определенного интеграла к вычислению площадей плоских фигур. Геометрические приложения определенного интеграла. Понятие площади в полярных координатах. Расчет длины дуги кривой и ее построение. Основные правила вычисления объемов тел.
курс лекций, добавлен 23.10.2013Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Возникновение необходимости в дробных числах. Дроби в древнем Египте, Риме и других государствах древности. Математический папирус Ринда. Составные части Уаджета (или глаза Гора). Правила измерения длины, площади, объёма, время и других величин.
презентация, добавлен 25.06.2017Характеристика методики решения системы линейных уравнений. Изучение методов поиска преобразования с помощью средств матричного исчисления. Определение с помощью векторной алгебры длины ребер и направляющих косинуса вектора, объема пирамиды и ее высоты.
методичка, добавлен 25.05.2015Понятие прямоугольного треугольника, его характеристика и отличительные свойства. Теорема о сумме острых углов прямоугольного треугольника. Закрепление знаний учащихся в ходе решения тригонометрических задач по определению длины катетов и гипотенузы.
презентация, добавлен 30.10.2014