Доказательство формулы Ньютона-Лейбница
Формула Ньютона-Лейбница как один из ключевых элементов математического анализа и основа для интегрального исчисления. Характеристика теоремы о среднем значении для определенного интеграла. Определение производной как предела разностного отношения.
Подобные документы
Предположение группы событий, объединение которых образует пространство элементарных исходов. Использование диаграммы Венна для теоремы сложения вероятностей и умножения. Применение формулы Байеса для условного исчисления априорной реализации гипотезы.
реферат, добавлен 26.06.2013Методы поиска решений нелинейных уравнений, сущность метода Ньютона. Интерполяция функции с помощью полинома Лагранжа. Вычисление интеграла по формуле трапеций с тремя десятичными знаками, расчет интеграла по формуле Симпсона. Оптимизация функции.
контрольная работа, добавлен 13.10.2014Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
презентация, добавлен 21.09.2013Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
курсовая работа, добавлен 06.01.2014- 105. Метод Ньютона
Общая характеристика метода Ньютона, знакомство с особенностями применения. Анализ способов записи формального представления по формуле Тейлора, основные проблемы. Рассмотрение процесса вычисления приближенного значения корня, использование выражений.
лабораторная работа, добавлен 02.10.2013 Понятие автоматического доказательства теоремы, противоречивость отрицания формулы. Алгоритм построения вывода методом резолюций. Отличие теоремы резолюций от правил modus ponens и производных правил. Проблема доказательства в логике. Дизъюнкция литер.
презентация, добавлен 17.04.2013- 107. Теория вероятностей
Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.
презентация, добавлен 10.01.2017 - 108. Теория вероятности
Понятие алгебры событий. Рассмотрение стохастического эксперимента определения вероятности. Свойства суммы и произведения событий. Методы расчета совместного появления двух величин. Основные формулы для исчисления функции Лапласа и теоремы Байеса.
методичка, добавлен 07.10.2015 Вычисление определенного и неопределенного интеграла с помощью формулы интегрирования по частям выражения. Нахождение площади фигуры, ограниченной линиями. Построение графика функций, нахождение точек пересечения. Пример расчета несобственного интеграла.
задача, добавлен 09.06.2014Доказательство теоремы, позволяющей решить проблему разрешимости (выполнимости) для формул исчисления высказываний, содержащих предикаты, зависящие от одного переменного. Представление равносильности в виде тождественно истинной формулы для любого поля.
контрольная работа, добавлен 05.11.2017Получение двусторонних оценок предела максимального среднего для периодической функции, зависящей от времени и основных переменных, и дифференциального включения с постоянной частью. Доказательство теоремы существования предела максимального среднего.
статья, добавлен 31.05.2013Задача интегрального и дифференциального исчисления. Свойства неопределённого интеграла. Метод непосредственного интегрирования, интегрирования по частям. Интегрирование рациональных дробей, тригонометрических функций, простейших иррациональных функций.
презентация, добавлен 24.09.2019Роль математики в современной науке. Построенная Ньютоном модель механического движения как самый важный источник математического анализа, изучающего производную и ее свойства. Потребность развития математической науки и ее практических применений.
статья, добавлен 09.04.2019Характеристика определенного интеграла как аддитивного монотонного функционала, заданного на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая – область в множестве задания этой функции. Примеры решения задач.
реферат, добавлен 25.05.2016Свойства шара и сферы. Принцип Кавальери, позволяющий более просто вычислять объёмы тел, доказательство с его помощью формулы объёма шара. Взаимное расположение шара и плоскости. Вычисление объёмов тел с помощью интеграла. Площадь поверхности шара.
реферат, добавлен 26.05.2012- 116. Свойства интегралов
Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.
контрольная работа, добавлен 25.09.2017 Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.
презентация, добавлен 18.09.2013Вычисление площади плоской фигуры с применением определенного интеграла. Определение объема тела вращения при помощи геометрических расчетов. Понятие и признаки несобственного интеграла. Несобственные интегралы с бесконечными пределами интегрирования.
лекция, добавлен 03.04.2019Методика определения определенного интеграла. Нахождение площадей плоских фигур. "Неопределенный интеграл" или "множество всех первообразных", основные понятия и формулы. Нахождение интеграла (интегрирование), исходя из его геометрического смысла.
контрольная работа, добавлен 11.11.2010Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.
реферат, добавлен 12.09.2010Определение многогранника, его основные виды. Особенности теоремы Эйлера, характеристика Платоновых тел. Формулы расчета площадей, объемов, высот и диагоналей многогранников. Характеристика икосаэдра, октаэдра и додекаэдра. Звездчатые многогранники.
презентация, добавлен 23.11.2016История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.
реферат, добавлен 08.05.2012Поняття інтерполяції як різновиду апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних. Характеристика теореми Вейерштрасса. Розгляд першої та другої інтерполяційної формули Ньютона. Оцінка похибок центральних формул.
курсовая работа, добавлен 06.04.2015Расчет центра тяжести однородной фигуры, ограниченной линиями. Проверка формулы Грина для интеграла. Исследование рядов на сходимость. Изменение порядка интегрирования, вычисление интеграла. Расчет области сходимости степенного ряда с заданной точностью.
контрольная работа, добавлен 27.06.2017Выведены формулы для решений уравнения Пифагора, они отличаются от общеизвестных формул древних. Формулы могут быть использованы для доказательства большой теоремы Ферма, методом бесконечного спуска, для всех нечётных значений показателя степени n.
статья, добавлен 07.06.2008