Общие вопросы построения регрессионных моделей
Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.
Подобные документы
Расчет линейного коэффициента парной корреляции, коэффициента детерминации и ошибки аппроксимации. Определение значимости параметров регрессии с помощью F-критерия Фишера и t-критерия Стьюдента. Скорректированный коэффициент множественной детерминации.
контрольная работа, добавлен 27.04.2017Исторические сведения о возникновении и распространении магических квадратов. Основные теории их построения и преобразования. Методы построения и свойства мало исследованных совершенных магических квадратов. Решение математических комбинаторных задач.
книга, добавлен 16.05.2014Рототабельное планирование эксперимента второго порядка. Порядок проверки значимости коэффициентов уравнения регрессии с помощью критерия Стьюдента. Проверка адекватности уравнения регрессии с помощью критерия Фишера. Построение чертежа линии уровня.
контрольная работа, добавлен 20.10.2013Основы статистического метода исследования. Детерминированная теория ошибок и дисперсии искомых оценок. Применение принципа наименьших квадратов в экспериментальной науке. Выведение погрешности наблюдений из распределения среднего арифметического.
статья, добавлен 22.02.2019Знакомство с принципами и критериями выбора регрессионной модели. Рассмотрение видов закономерностей в лесоводстве и лесной таксации. Особенности математической формы эмпирических моделей связи. Анализ линейных и нелинейных регрессионных уравнений.
автореферат, добавлен 29.03.2018Определение понятия "аппроксимация", сущность и особенности метода аппроксимации при анализе, обобщении и использовании эмпирических результатов. Получение эмпирических формул методом наименьших квадратов. Расчёт аппроксимаций экспериментальных данных.
курсовая работа, добавлен 03.05.2014Способы построения вариационных рядов в статистическом анализе. Интервальный и дискретный вариационные ряды. Эмпирическая функция распределения. Доверительные интервалы для истинного значения измеряемой величины и среднего квадратического отклонения.
лабораторная работа, добавлен 30.03.2018Построение поля корреляции и формулирование гипотезы о форме связи. Расчет параметров уравнений линейной регрессии. Сравнительная оценка силы связи фактора с результатом с помощью среднего (общего) коэффициента эластичности. Средняя ошибка аппроксимации.
контрольная работа, добавлен 29.04.2015Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.
контрольная работа, добавлен 03.06.2009Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
шпаргалка, добавлен 22.04.2015Понятие и сущность статистических гипотез, описание и специфика их видов. Принцип проверки гипотез и ошибки первого и второго рода. Х2 критерии Пирсона, схема их применения. Значение максимального уровня значимости, график минимальных скачков цен.
курсовая работа, добавлен 03.03.2015Аппроксимация данных заданной линейной зависимостью методом наименьших квадратов. Определение ее параметров. Нахождение точек экстремума функции с помощью метода множителей Лагранжа. Исследование функции на экстремум. Изменение диагонали прямоугольника.
контрольная работа, добавлен 19.05.2015Круговая функция распределения, ее характеристика. Первые оценки скорости сходимости. Примеры ядерных оценок. Гистограммные оценки, оценки типа Фикс-Ходжеса. Непараметрические оценки регрессии. Дискриминантный анализ в пространстве общей природы.
статья, добавлен 22.10.2017Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.
реферат, добавлен 08.05.2011Статистическое описание и выборочные характеристики двумерного случайного вектора. Предмет линейного регрессионного анализа. Особенности однофакторного дисперсионного анализа. Уравнение выборочной линейной регрессии. Выборочное значение статистики.
курсовая работа, добавлен 22.10.2017Суть аппроксимации таблично заданной функции по МНК (методу наименьших квадратов), ее отличие от метода интерполирования. Задача построения аппроксимирующих функций в виде элементарных функций (степенной, показательной, логарифмической, гиперболической).
контрольная работа, добавлен 25.04.2015Статистическое описание и выборочные характеристики двумерного случайного вектора. Построение диаграммы рассеяния. Однофакторный дисперсионный анализ. Определение линейного контраста и выборочной линейной регрессии. Расчет границ доверительного интервала.
контрольная работа, добавлен 16.10.2017Основные характеристики задач оптимизации, выбора и принятия решений. Аналитические методы построения множества Парето. Методы определения весовых коэффициентов. Обработка результатов экспертных оценок. Методы замены векторного критерия скалярным.
учебное пособие, добавлен 12.05.2018Многомерные совокупности. Методы обработки матрицы. Оценки математического ожидания. Виды зависимостей между величинами: функциональная и статистическая. Корреляционная зависимость. Оценка корреляционного момента. Выбор вида уравнения регрессии.
контрольная работа, добавлен 29.11.2011Последовательность и вид многочленов на конечной степени точек в частных случаях. Сила нормированности. Определение коэффициентов Фурье. Применение метода наименьших квадратов. Ортогональные многочлены системы. Интерполяционный многочлен Лагранжа.
контрольная работа, добавлен 20.05.2013Статистическое описание и выборочные характеристики двумерного случайного вектора. Линейная регрессия, задачи линейного регрессионного анализа. Однофакторный дисперсионный анализ. Границы доверительных интервалов для параметров линейной регрессии.
курсовая работа, добавлен 28.10.2017Анализ видов регрессионных моделей, изучение алгоритмов оценки их точности. Математическое описание информационной системы оценки точности регрессионных моделей. Анализ программной реализации информационной системы оценки точности регрессионных моделей.
статья, добавлен 16.07.2018Исследование функции среднеквадратической ошибки прогноза для ридж-регрессии на экстремум в зависимости от параметра регуляризации. Использование локального минимума СКОП для поиска оптимального параметра управления при мультиколлинеарности факторов.
статья, добавлен 29.08.2016Характеристика понятия и сущности методики оценки параметров распределения, проверки гипотез, изучение системы случайных величин: корреляции, регрессии. Анализ особенностей статистического оценивания. Характеристика выборочного коэффициента корреляции.
курсовая работа, добавлен 21.09.2017Построение линейного уравнения парной регрессии. Анализ верхней и нижней границ доверительных интервалов. Расчёт ошибки прогноза кредитов. Использование критериев Фишера и Стьюдента при оценке статистической значимости параметров регрессии и корреляции.
контрольная работа, добавлен 09.06.2015