К вопросу о классах неинвариантных сопряженных подгрупп

Изучение групп с заданным количеством классов неинвариантных сопряженных подгрупп. Число классов в периодической неабелевой группы, содержащей бесконечную абелеву подгруппу и имеющая конечное множество классов неинвариантных сопряженных подгрупп.

Подобные документы

  • Теорема с доказательством решения системы линейных алгебраических уравнений за конечное число итераций со стационарной матрицей. Конечный итерационный процесс в системе с коэффициентами. Матрицы алгебраической и итерационной систем для конечных процессов.

    статья, добавлен 05.08.2020

  • Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.

    курс лекций, добавлен 26.11.2016

  • Совершенствование методики изучения уравнений как моделей реальных процессов. Теоретические основы математического моделирования, его виды и классификация. Уравнения как математические модели реальных ситуаций. Анализ учебников алгебры 5-9 классов.

    дипломная работа, добавлен 05.07.2014

  • Понятие, свойства алгебраических операций. Изоморфизм групп, подгруппы. Смежные классы, фактор-группы, гомоморфизм и циклические группы. Определение графов, изоморфизм. Графы специального вида, деревья, циклы и планарность. Группы подстановок и тетраэдра.

    курсовая работа, добавлен 29.06.2014

  • Поиск циклического изоморфизма среди групп 2-го и 3-го порядка. Построение таблицы Келли для групп различного порядка. Доказательство теоремы о циклическом изоморфизме. Элементы симметрической группы. Система матричных уравнений. Группы матриц Паули.

    научная работа, добавлен 30.08.2011

  • Получение новых достаточных условий разрешимости краевых задач для различных классов квазилинейных функционально-дифференциальных уравнений с необратимой линейной частью. Проблема разрешимости операторного уравнения, характеристика используемых теорем.

    автореферат, добавлен 26.01.2018

  • Разработка программного модуля, ориентированного на нахождение минимума целевой функции по методу Фибоначчи на заданном отрезке, с заданным количеством вычислений и точностью. Тестирование результатов работы с помощью нескольких функций и их сравнение.

    реферат, добавлен 11.11.2014

  • Расчет ранга инцидентности группы типа pn*p. Оценка ранга инцидентности рассматриваемой группы. Некоторые свойства непримарных групп, связанные с I-рангом. Конечные неабелевы р-группы I-ранга 4, покрываемые тремя подгруппами. Конечные неабелевы группы.

    статья, добавлен 26.04.2019

  • Анализ алгоритма разбиения графа, приводящего к минимуму числа соединительных ребер за конечное число шагов при наличии ограничений. Методика определения количества внешних соединительных ребер составного элемента графа до внесения в него вершин.

    статья, добавлен 12.06.2016

  • Теория модулярных форм. Анализ соответствия между элементами конечных групп и модулярными формами, основанный на рассмотрении характеристических многочленов операторов. Проблема нахождения конечных групп на примере элементарных абелевых 2-групп.

    статья, добавлен 31.05.2013

  • Множество Rn и расстояние в нем. Метрическое пространство как множество Х вместе с фиксированной в нём метрикой. Открытые и замкнутые множества. Общая характеристика и основные свойства сферы как множества точек. Некоторые примеры топологической сферы.

    реферат, добавлен 16.09.2011

  • Разработка эффективных итерационных процессов решения систем сеточных уравнений, аппроксимирующих эллиптические краевые задачи. Принципы декомпозиции задачи на конечное число подзадач, упрощения этих подзадач с помощью введения фиктивного пространства.

    автореферат, добавлен 02.03.2018

  • Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.

    контрольная работа, добавлен 19.06.2011

  • Вычисление задач на действия с конечными множествами. Решение задач на условную вероятность и действия с ними. Плотность распределения и ее свойства. Построение гистограмм и полигонов частот по заданным условиям. Решение задач по схеме и формуле Бернулли.

    методичка, добавлен 07.12.2015

  • Понятие множества, его виды и характеристическое свойство. Математическое доказательство как цепочка дедуктивных умозаключений, выполняемых по определенным правилам. Теоретико-множественный смысл натурального числа, нуля и операций на множестве.

    шпаргалка, добавлен 18.06.2011

  • Использование метода ветвей и границ для решения задач длительного планирования, содержащих конечное число допустимых планов. Вычисление допустимых планов и проверка планов на оптимальность. Этапы построения формальной схемы метода ветвей и границ.

    лекция, добавлен 14.08.2017

  • Особенность использования математики в экономических процессах. Изучение специфических математических методов, которые основываются на основных постулатах теории вероятностей. Характеристика разложения функции в бесконечную сумму степенных функций.

    статья, добавлен 27.02.2019

  • Изучение интегральных вычислений в курсе математического анализа. Определение риманового числа. Понятие непрерывной периодической функции. Анализ признаков сходимости ряда. Доказательство теорем о несобственном интеграле непрерывной периодической функции.

    курсовая работа, добавлен 02.10.2021

  • Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.

    учебное пособие, добавлен 19.01.2015

  • Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.

    лекция, добавлен 29.09.2013

  • Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.

    презентация, добавлен 21.09.2013

  • Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.

    лекция, добавлен 22.12.2013

  • Основы арифметических действий над натуральными числами. Операции декартового произведения множеств. Характеристика комплексных чисел и возможные операции над ними. Пересечение, объединение, дополнение, декартово произведение в курсе школьной математики.

    реферат, добавлен 08.10.2012

  • Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.

    курс лекций, добавлен 06.08.2017

  • Понятие дополнения нечеткого множества, правила их пересечения и объединения. Треугольная норма как бинарная операция на единичном интервале. Использование принципа обобщения для определения функции принадлежности нечеткого числа, возможные трудности.

    презентация, добавлен 16.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.