Фигурные числа
История возникновения фигурных чисел, их основные виды и свойства. Анализ возможностей применения фигурных чисел в повседневной жизни (в живописи, архитектуре, дизайне и других сферах). Центрированные полигональные числа и многомерные фигурные числа.
Подобные документы
История открытия алгебраических чисел: действительного числа и мнимой единицы. Открытие метафизиком Смирновым В.В. еще двух алгебраических чисел: доказательства, расчеты, научное обоснование. Полезность данного открытия на примерах решения уравнений.
научная работа, добавлен 30.04.2014Число как основное понятие математики. Натуральные числа и их функции. История происхождения дробей в Древней Греции, Египте, Риме, Руси. Развитие идеи отрицательного количества в Европе. Определение действительных рациональных и иррациональных чисел.
реферат, добавлен 15.12.2016- 28. Числовые системы
Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.
учебное пособие, добавлен 16.06.2015 Понятие комплексного числа, его геометрическая интерпретация. Модуль комплексного числа, свойства модуля и аргумента. Операции сложения, вычитания, умножения и деления комплексных чисел, возведение в степень и извлечение корня. Свойства эрмитовой матрицы.
курсовая работа, добавлен 07.06.2014Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.
презентация, добавлен 19.01.2015История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.
курсовая работа, добавлен 22.04.2011Краткий исторический очерк, возникновение и развитие чисел. Поле алгебраических чисел, их суть и значение. Понятие числового поля, алгебраическое число. Рациональные приближения алгебраических чисел. Теорема Лиувиля, трансцендентные числа Лиувиля.
реферат, добавлен 08.06.2010Польза мнимых чисел при решении кубических уравнений. Полное геометрическое истолкование комплексных чисел и действий над ними. Основные правила возведения в n–ю степень и извлечения корня n–й степени для комплексных чисел. Развитие теории чисел.
презентация, добавлен 05.10.2015- 34. Протилежні числа
Методика формування уявлення про суть поняття "протилежні числа". Способи знаходження й правильного запису числа, протилежного до даного. Розв’язувати рівнянь, що передбачають застосування поняття числа, протилежного до даного. Приклади протилежних чисел.
конспект урока, добавлен 19.09.2018 Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.
конспект урока, добавлен 20.09.2018Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.
статья, добавлен 20.05.2017- 38. Дійсні числа
Раціональні числа як нескінченні десяткові періодичні дроби. Особливості основних теорем для розширення множини раціональних чисел. Ірраціональне число як нескінченний неперіодичний десятковий дріб. Модуль дійсного числа, характеристика його властивостей.
курсовая работа, добавлен 15.06.2016 - 39. Комплексні числа
Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.
контрольная работа, добавлен 16.07.2017 Понятие простого числа и арифметической прогрессии. Обоснование существования многого количества арифметических прогрессий, образованных из разных простых чисел. Исследование простых чисел в вопросе их принадлежности к арифметической прогрессии.
статья, добавлен 17.02.2019История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.
реферат, добавлен 29.08.2014Биография Пифагора и его школа. Четно-нечетные числа как числа, которые будучи разделены пополам, не делятся. Таблица десяти чисел. Совершенное число как число, сумма дробных частей которого равна самому числу. Влияние пифагорейских гетерий на политику.
реферат, добавлен 06.03.2010Перевод целого числа из двоичной (восьмеричной) системы в десятичную. Арифметические действия в заданной системе счисления. Перевод чисел из десятичной системы в системы с основаниями 2, 8 и 16. Алгоритм определения минимального из десяти заданных чисел.
реферат, добавлен 08.03.2010Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.
курсовая работа, добавлен 22.04.2011Использование десятичной системы счисления как один из наиболее важных факторов, от которых зависят основные свойства редукции натуральных чисел. Специфические особенности доказательства операции суммарного редуцирования любого натурального числа.
статья, добавлен 25.06.2018Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.
презентация, добавлен 20.10.2016Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.
реферат, добавлен 26.03.2019Определение цепных дробей, их свойства и примеры. Представление действительных чисел цепными дробями общего вида. Золотое сечение – гармоническая пропорция, история данного понятия. Расчёт его числа при помощи ряда Фибоначчи и с помощью цепных дробей.
реферат, добавлен 07.11.2011- 49. Теория чисел
Отношение делимости в кольце целых чисел, их свойства. Алгоритм Евклида как метод нахождения НОД(a,b), основанный на 2х леммах. Взаимно простые числа. Наименьшее общее кратное. Основная теорема арифметики. Непозиционные и позиционные системы счисления.
реферат, добавлен 13.01.2014 Общая характеристика простых и составных чисел; необходимость ознакомления учеников с таблицей простых чисел. Ключевые этапы урока. Ключевые отличия составных и простых чисел. Основные вопросы, помогающие ученикам скорее закрепить изученный материал.
контрольная работа, добавлен 17.04.2012