Матрицы смежности и инцидентности
Ознакомление с формульным выражением симметричной квадратной матрицы. Определение свойств матриц смежности и инцидентности. Расчеты ориентированного мультиграфа при нулевой, либо линейной комбинации строк. Обзор теоремы ориентированного псевдографа.
Подобные документы
- 26. Матрица
Элементы и обозначение матриц. Свойства операции произведения матриц. Получение присоединенной матрицы путем замены каждого элемента матрицы на его алгебраическое дополнение. Использование метода обратной матрицы для решения систем линейных уравнений.
презентация, добавлен 14.11.2014 Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.
курсовая работа, добавлен 04.02.2015Исследование и анализ конечных групп с условием инцидентности для ненильпотентных подгрупп. Ознакомление с ненильпотентными группами, которые содержат истинную подгруппу Шмидта. Определение и характеристика особенностей конечной неразрешимой группы.
статья, добавлен 26.04.2019Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.
лекция, добавлен 29.09.2013- 30. Алгебра матриц
Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.
методичка, добавлен 19.09.2015 Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Расчет ранга инцидентности группы типа pn*p. Оценка ранга инцидентности рассматриваемой группы. Некоторые свойства непримарных групп, связанные с I-рангом. Конечные неабелевы р-группы I-ранга 4, покрываемые тремя подгруппами. Конечные неабелевы группы.
статья, добавлен 26.04.2019Решение задачи оптимального размещения компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Анализ свойств минимальных путей в нагруженном орграфе. Построение матрицы инцидентности для орграфа.
курсовая работа, добавлен 10.01.2016- 34. Обратная матрица
Определение сущности и свойств обратной матрицы. Применение метода Гаусса-Жордана для нахождения обратной матрицы. Проблема выбора начального приближения в процессах итерационного обращения матриц. Решение системы линейных алгебраических уравнений.
реферат, добавлен 26.01.2016 Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.
шпаргалка, добавлен 18.03.2013Ознакомление с формульным выражением параметрических показателей линейной и нелинейной парных корреляций. Анализ непараметрических проявлений взаимосвязи величин и сгруппированных альтернативных признаков. Оценка существенности уравнений регрессии.
презентация, добавлен 11.10.2013Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Равенство матриц, действия над ними. Умножение матрицы на матрицу-столбец. Определения определителей второго и третьего порядков. Понятие обратной матрицы. Решение систем линейных уравнений с неизвестными матричным методом и по формулам Крамера.
контрольная работа, добавлен 26.09.2017- 39. Матричный анализ
Сумма элементов матрицы по строкам. Алгоритм нахождения обратной квадратной матрицы и ее определителя. Решение системы линейных уравнений методом Крамера и Гаусса. Построение математической модели экономического процесса и определение плана производства.
контрольная работа, добавлен 21.05.2013 Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012- 41. Ранг матрицы
Определитель с элементами, стоящими на пересечении строк, и столбцов матрицы. Правило вычисления ранга матрицы. Перебор всех возможных миноров. Элементарные преобразования: умножение, прибавление и перестановка рядов. Метод "окаймляющих миноров".
лекция, добавлен 29.09.2013 - 42. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 - 43. Ранг матрицы
Определение понятия "ранг матрицы". Сущность элементарных преобразований матрицы. Алгоритм нахождения ранга матрицы. Характеристика процесса транспонирования матрицы. Способы и примеры вычисления ранга матрицы с помощью элементарных преобразований.
презентация, добавлен 28.09.2015 - 44. Понятие матриц
Сущность матрицы как совокупности m•n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Главные свойства элементов, их порядок записи. Характеристика основных видов: треугольная, квадратная. Порядок сложения и умножения матриц.
курсовая работа, добавлен 03.12.2013 - 45. Ранг матрицы
Понятие ранга матрицы как наивысшего порядка отличных от нуля миноров матрицы. Определение базисного минора. Сущность элементарных преобразований. Умножение ряда (строки или столбца) на число, не равное нулю. Получение эквивалентной и ступенчатой матрицы.
лекция, добавлен 26.01.2014 Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.
курсовая работа, добавлен 28.06.2012Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.
курсовая работа, добавлен 22.01.2016- 48. Решение матриц
Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.
контрольная работа, добавлен 11.04.2009 Свойства, которыми обладают бинарные отношения на множестве натуральных чисел. Область определения предиката. Построение матрицы смежности. Рефлексивное, антисимметричное и транзитивное отношение перпендикулярности на множестве прямых в пространстве.
контрольная работа, добавлен 28.10.2014Невырожденные матрицы второго порядка. Теорема о разложении матрицы в линейную комбинацию ее сопряжённых корней. Условие идемпотентности квадратных матриц второго порядка. Нелинейные системы уравнений второго порядка, задаваемые матричными уравнениями.
научная работа, добавлен 04.05.2012