Обучение доказательству неравенств в курсе основной школы
Средние величины, неравенство Коши. Доказательство неравенств методами "от противного" и математической индукции. Использование неравенства Коши-Буняковского при решении тригонометрических уравнений. Решение уравнений с помощью замечательных неравенств.
Подобные документы
Примеры решения простейших иррациональных неравенств. Использование преобразований подкоренного выражения в иррациональных неравенствах. Применение в них свойства монотонности функции. Решение неравенств, содержащих несколько корней чётной степени.
учебное пособие, добавлен 18.06.2015Действия с комплексными числами. Системы линейных уравнений с тремя неизвестными. Решение линейных неравенств, содержащих знак модуля. Показательная функция, ее свойства, график. Показательные уравнения и неравенства. Логарифмическая функция, ее свойства.
методичка, добавлен 02.04.2015- 28. Неравенства Коши
Коши Луи (1789-1857 гг.) - знаменитый французский математик. Изучение теории дифференциальных уравнений. Комплексные пространства со скалярным произведением. Определение предела математической последовательности. Множества в Евклидовом Пространстве.
реферат, добавлен 06.10.2017 Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.
презентация, добавлен 07.05.2014Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
курсовая работа, добавлен 09.06.2014Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.
учебное пособие, добавлен 10.04.2015Изучение неравенства в области элементарной математики. Рассмотрение различных приемов решения алгебраических неравенств, основанных на применении метода интервалов. Прием возведения обеих частей иррационального неравенства в одну и ту же степень.
статья, добавлен 18.02.2020Характеристика особенностей метода математической индукции и аксиомы Пеано. Аспекты вычисление сумм и произведений. Методика доказательства тождеств и неравенств с помощью математической индукции. Анализ числа отображений k-множества в m-множество.
учебное пособие, добавлен 25.11.2013Изучение свойств показательной и логарифмической функций. Развитие интереса к математике; формирование навыков самостоятельной деятельности на уроке. Реализация творческого мышления при решении показательных и логарифмических уравнений и неравенств.
презентация, добавлен 24.10.2012Сущность геометрических решений тригонометрических задач. Рассмотрение пары подобных треугольников при расчете текстовых заданий. Особенность вычисления систем уравнений с двумя и более переменными. Анализ способов доказательства тождеств и неравенств.
контрольная работа, добавлен 20.11.2015Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.
курсовая работа, добавлен 04.11.2012Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.
учебное пособие, добавлен 26.03.2014Преобразование графиков тригонометрических функций путем параллельного переноса, сжатия и расширения. Анализ промежутков монотонности функции. Точки экстремума. Формирование навыков решения и построения тригонометрических уравнений и неравенств.
презентация, добавлен 02.05.2012Особенности метода математической индукции, его широкое применение при доказательстве теорем, тождеств, неравенств, к суммированию рядов, геометрическим задачам и задачам на делимость натуральных чисел. Примеры применения метода математической индукции.
реферат, добавлен 15.12.2011Обоснование метода одномонотонных последовательностей для случая с произвольным числом переменных. Конечное число попарных перестановок элементов строк. Доказательство неравенств с минимальным числом переменных. Расчет упорядоченных наборов чисел.
научная работа, добавлен 18.02.2020Исследование метода доказательства вероятностных неравенств, основанный на использовании рекурсивно определяемых функций. Методика разработки и решения задачи, естественным образом возникающей в связи с вопросом об усилении неравенства Розенталя.
статья, добавлен 31.05.2013Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Графическое решение квадратного уравнения. График уравнения с двумя переменными как множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство, принципы его составления. Применение графиков в решении неравенств.
реферат, добавлен 03.04.2012Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.
реферат, добавлен 06.04.2009История возникновения тригонометрии как науки, особенности ее формирования. Анализ вклада члена Российской академии наук Л. Эйлера в развитие современной тригонометрии. Общая характеристика и методика решения тригонометрических уравнений и неравенств.
доклад, добавлен 06.05.2010Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.
контрольная работа, добавлен 29.05.2017Основные тригонометрические тождества: формулы привидения, сложения, двойного и половинного угла, преобразования сумм тригонометрических функций в произведение. Графики и свойства обратных тригонометрических функций. Методы решения уравнений, неравенств.
контрольная работа, добавлен 16.06.2010Наличие высокого порядка аппроксимирующих формул - одна из наиболее специфических особенностей современных численных алгоритмов решения задачи Коши. Характеристика и методика расчета явных экстраполяционных уравнений Адамса-Башфорта третьего порядка.
курсовая работа, добавлен 27.11.2017- 50. Логарифм
Определение логарифма, его основные свойства. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Логарифмическая функция, ее свойства и построение графика. Решение логарифмических уравнений и неравенств с помощью свойств логарифма.
презентация, добавлен 25.11.2013