Теория графов
Исследование математической теории о совокупности непустого множества вершин и ребер. Анализ кратности неориентированных и ориентированных дуг. Характеристика понятия эквивалентности при множестве вершин. Обоснование гомеоморфного подразбиения дуги.
Подобные документы
Изучение одного из возможных подходов к системному обобщению математического понятия множества, а именно подхода, основанного на системной теории информации. Использование теории как основы для обобщения и создания "математической теории систем".
статья, добавлен 26.04.2017Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.
статья, добавлен 29.04.2017История возникновения графов, изучение их определения и свойств. Исследование роли графов в жизни. Применение теории графов при решении математических задач и их использование для изображения железных дорог и систем улиц города на географических картах.
презентация, добавлен 15.10.2016Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Алгоритм выделения эйлерова цикла в связном мультиграфе с четными степенями вершин. Гамильтоновы циклы и цепи. Остовное дерево с минимальной суммой длин содержащихся в нем ребер. Висячая вершина с инцидентным ей ребром. Изучение свойств деревьев.
лекция, добавлен 18.10.2013Исследование алгоритмов поиска в ориентированных графах, их применение в программах для транспортных и коммуникационных сетей. Способы представления ориентированных графов в виде различных матриц, графически и другими способами с практическими примерами.
курсовая работа, добавлен 23.04.2011Определение кратчайших путей от вершины до остальных вершин графа, используя алгоритмы Дейкстры и Беллмана. Определение кратчайших путей между всеми парами вершин графа с применением алгоритма Флойда. Программирование алгоритма дискретной математики.
курсовая работа, добавлен 12.11.2017Решение задачи оптимального размещения компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Анализ свойств минимальных путей в нагруженном орграфе. Построение матрицы инцидентности для орграфа.
курсовая работа, добавлен 10.01.2016Основные понятия теории графов. Экстремальные пути и контуры на графах. Характеристика особенностей алгоритма Форда. Основы решения задачи поиска контура минимальной длины. Аспекты применения алгоритма Форда-Фалкерсона в задаче о максимальном потоке.
статья, добавлен 13.01.2014Графічне зображення графа та інші способи його представлення, відношення інцидентності. Дослідження оптимального шляху графа. Проведення синтезу графа, визначення ваги ребер та індексів вершин, що має задану структуру та заданий оптимальний шлях.
лабораторная работа, добавлен 06.06.2015Определения теории графов. Реализация алгоритмов обработки графов в виде машинных процедур. Определение путей в графах. Математическое моделирование графов. Реализация алгоритма Флойда-Уоршелла без вычислительной системы. Оценка сложности алгоритма.
курсовая работа, добавлен 18.10.2024Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.
курс лекций, добавлен 07.04.2013Розгляд задачі побудови максимального простого ланцюга графа. Означення серединних умов типу 4 і 5 для випадку взаємної залежності вершин. Формулювання твердження про властивості конструктивної повноти зв’язаних серединних умов щодо вершин і шляхів.
статья, добавлен 30.01.2017- 64. Теория множеств
Рассмотрение обозначений, принятых в теории множеств. Характеристические функции множеств, свойства операций над множествами. Применение понятия мощности множества для количественной характеристики множеств. Верхняя и нижняя грани числового множества.
курсовая работа, добавлен 07.05.2015 Характеристика понятия множества, описание операций над множествами. Конечные и бесконечные множества. Счетные и несчетные множества. Анализ рациональных чисел как таких чисел, которые можно записать в виде дроби с целыми числителем и знаменателем.
реферат, добавлен 22.11.2018Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013Построение модели транспортной сети в виде графа, с множеством вершин, соответствующих узлам сети, и множеством ребер – участкам дорог. Оптимальный алгоритм выделения наибольших максимальных цепей по заданному критерию и оценка по остальным критериям.
статья, добавлен 26.05.2017Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".
методичка, добавлен 15.10.2016Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011Свойства треугольной последовательности биномиальных коэффициентов Паскаля. Применение теории графов находит в современных геоинформационных системах. Статистические методы организации выборок, связь математической статистики с теорией вероятностей.
реферат, добавлен 13.11.2013Основные понятия и определения математической статистики. Ее теоретические основы как науки. Характеристики выборочной и генеральной совокупности. Основные способы формирования выборочной совокупности. Многоступенчатый отбор и многофазная выборка.
лекция, добавлен 08.07.2014Отношения, связывающие элементы множеств. Свойства бинарных отношений. Функциональные отношения. Отношения на заданном двухэлементном множестве. Выделение отношений эквивалентности и построение классов эквивалентности. Классификация отношений порядка.
лабораторная работа, добавлен 17.09.2019- 73. Теория графов
Первая работа по теории графов всемирно известного математика и механика Леонардо Эйлера. Построения электрических цепей и подсчёта химических веществ с различными типами молекулярных соединений. Становление кибернетики и развитие вычислительной техники.
реферат, добавлен 17.06.2014 Определение графов, их свойства и типы. Использование диаграмм для представления графов. Элементарные свойства остовных деревьев в связных графах. Топологическая теория графов. Введение в теорию матроидов, доказательство теорем о связности и укладках.
учебное пособие, добавлен 15.10.2016Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.
лабораторная работа, добавлен 28.05.2015