Нечеткая логика
Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.
Подобные документы
Изучение теории множеств, их включения и равенства. Характеристика математической логики и предела последовательности функций. Определения первообразных и неопределенных интегральных исчислений. Анализ векторных функций. Тригонометрическая система.
курс лекций, добавлен 29.05.2013Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.
книга, добавлен 06.05.2013Определение и анализ сущности комплементарной логики, которая создаётся путём синтеза экстенсиональной и интенсиональной логики. Характеристика особенностей интерпретации редукции волновой функции на основе принципа психофизического параллелизма.
статья, добавлен 25.12.2021Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.
контрольная работа, добавлен 19.06.2011- 55. Алгебра логики
Раздел математической логики, в котором изучаются логические операции над высказываниями. Аксиома - исходное положение теории, принимаемое в рамках данной теории истинным без требования доказательства. Логические операции и математические выражения.
презентация, добавлен 12.03.2015 Анализ перспектив и "точек роста" современной теоретической и вычислительной математики. Теория нечетких множеств. Развитие идеи системного обобщения математики в области теории информации. Реализация идей системного интервального обобщения математики.
статья, добавлен 29.04.2017Способы задания множеств и бинарных отношений. Основные логические операции. Представление булевых функций. Понятия логики предикатов. Описание теории графов, конечных автоматов, языков и элементов кодирования. Расчет максимального потока в сетях.
учебное пособие, добавлен 13.01.2015Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.
контрольная работа, добавлен 28.09.2011Доказывание тождеств в теории множеств. Рассмотрение основных положений комбинаторики. Определение Эйлеровой цепи в неориентированном графе. Решение задач по алгебре логики. Изучение возможностей решения системы уравнений с использованием метода Гаусса.
контрольная работа, добавлен 20.01.2022Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
курс лекций, добавлен 01.04.2016- 61. Алгебра логики
Краткая справка возникновения логики как науки, методика и предмет ее исследования. Особые математические функции от логических аргументов. Преобразование выражений, состоящих из булевых функций, применение в вычислительной технике и информатике.
реферат, добавлен 18.06.2015 Современные рассуждения, демонстрирующие противоречивость наивной теории множеств. Предложенный Б. Расселом "парадокс Тристрама Шенди". Нетривиальные следствия аксиомы выбора. Рассмотрение рядов квадратов натуральных чисел, степеней двойки, факториалов.
статья, добавлен 15.02.2019Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).
статья, добавлен 26.04.2019Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.
учебное пособие, добавлен 15.10.2016Характеристика доказательства по заданному модусу путем построения диаграмм Эйлера. Изучение методов математической логики для формализации высказывания. Доказательство общезначимости формулы, используя законы алгебры, равносильные преобразования.
контрольная работа, добавлен 05.09.2016Значение и применение теории бесконечного множества простых чисел. Основы установления сравнительной количественной оценки множеств. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов, численными методами.
статья, добавлен 26.01.2019Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.
методичка, добавлен 24.09.2019Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.
статья, добавлен 26.04.2019Проблема сложности вычислений как одна из важнейших проблем в дискретной математики. Множества и основные операции над ними. Основные законы операций над множествами. Прямые произведения и функции. Теорема Кантора. Матричный способ задания множеств.
реферат, добавлен 16.05.2012- 70. Теория множеств
Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.
презентация, добавлен 10.05.2016 Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.
реферат, добавлен 11.10.2014Определение понятия линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Характеристика неравенства Коши-Буняковского. Изучение связных, несвязных, ограниченных, неограниченных множеств. Анализ компактных множеств.
курсовая работа, добавлен 21.09.2017История возникновения математической логики. Основное содержание, формулы, элементы, символы. Таблицы истинности, логические функции, основные логические операции. Законы логики и упрощение логических выражений. Решения задач по математической логике.
реферат, добавлен 06.06.2012История возникновения аксиоматического метода в математике и в гуманитарных науках. Решение учебно-исследовательских задач в университете с использованием систем компьютерной математики. Применение теории нечетких множеств в гуманитарных исследованиях.
статья, добавлен 17.07.2018- 75. Алгебра логики
Логика – наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и опровержений. Джордж Буль - создатель алгебры логики. Основные логические связки. Таблица истинности. Выполнимость формул.
презентация, добавлен 05.03.2012