Виды понятий. Определение между понятиями

Понятие суждения, содержащего новое знание, которое может быть получено посредством преобразования некоторого суждения, при этом исходное суждение рассматривается как посылка, а суждение, полученное в результате преобразования, как умозаключение.

Подобные документы

  • Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.

    лекция, добавлен 09.09.2017

  • Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

    курсовая работа, добавлен 03.11.2018

  • Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.

    лекция, добавлен 17.12.2014

  • Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.

    презентация, добавлен 02.03.2012

  • Виды теорем, их структура и обратные утверждения. Свойства логических операций. Умозаключения и их разновидности (разделительно-категорическое, условно-категорическое и условно-разделительное). Понятие конструктивной дилеммы, лемматических силлогизмов.

    реферат, добавлен 06.11.2011

  • Умножение элементов строки (столбца) матрицы. Понятие системы линейных уравнений и ее решения. Коэффициенты системы и свободные члены. Теорема Кронекера-Капелли. Линейная комбинация базисных столбцов матрицы. Условия существования решения системы.

    лекция, добавлен 15.09.2017

  • Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.

    контрольная работа, добавлен 09.07.2015

  • Определение сущности функции — одного из основных математических и общенаучных понятий. Изучение истории введения понятия функции через механическое и геометрическое представление. Анализ определения Дирихле, которое вызывало сомнения среди математиков.

    доклад, добавлен 13.06.2022

  • Определение границы числовой последовательности. Рассмотрение понятия предела функции в точке. Проведение исследования непрерывного соответствия между элементами двух множеств на промежутках. Анализ отрезка, содержащего в себе все члены порядка.

    статья, добавлен 30.01.2018

  • Понятие базовой переменной. Наличие свободного члена для пользования диофантовых уравнений (ДУ). Начало идентификации ДУ на разрешимость при помощи составления ДУ высокого порядка с последующим делением его на исходное ДУ. Понятие "коэффициента подобия".

    контрольная работа, добавлен 01.10.2017

  • Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.

    презентация, добавлен 14.01.2018

  • Способ вращения геометрической фигуры вокруг некоторой оси. Нахождение натуральной величины треугольника АВС при помощи вращения его вокруг горизонтали. Сущность способа плоскопараллельного перемещения. Определение расстояния от точки до плоскости.

    реферат, добавлен 24.11.2013

  • Построение решения дифференциального уравнения. Подбор многочлена, описывающего полученное решение. Определение корней многочлена на полученном интервале. Алгоритм вычислений для классического метода Рунге-Кутта. Интерполяция функции на данном интервале.

    курсовая работа, добавлен 07.08.2013

  • Равносильность уравнений с параметрами. Теоремы о равносильных преобразованиях уравнений, их доказательство и следствие. Характеристика равносильности неравенств с параметрами, их основные теоремы, определение из лемм, доказательства и следствия.

    лекция, добавлен 01.09.2017

  • Процедуры определения фрактальной размерности профиля и поверхности. Фрактал как фрагментированная геометрическая форма, которая может быть разделена на части, каждая из которых (приблизительно) представляет собой уменьшенную копию всего целого.

    статья, добавлен 27.05.2018

  • Краткие биографические данные о жизни Фридриха Гаусса – немецкого математика, астронома и физика. Первые исследования метода решения систем линейных алгебраических уравнений. Понятие расширенной матрицей системы. Элементарные преобразования системы.

    курсовая работа, добавлен 05.12.2013

  • Случайная величина – величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно. Дискретные, непрерывные и дискретно-непрерывные (смешанные) данные. Функция распределения вероятностей.

    реферат, добавлен 13.01.2014

  • Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

    реферат, добавлен 23.01.2022

  • Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.

    реферат, добавлен 12.04.2015

  • Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.

    курс лекций, добавлен 20.12.2012

  • Предмет начертательной геометрии. Методы центрального и параллельного проецирования. Точка, прямые и плоскости общего и частного положения на эпюре Монжа. Способы преобразования ортогональных проекций. Классификация поверхностей и многогранники.

    учебное пособие, добавлен 17.12.2014

  • Использование характеристик прямых, плоскостей и векторов при расчете параметров геометрических фигур. Аффинные преобразования, инвариантные точки и прямые. Уравнения биссектрисы и медианы. Асимптоты, эксцентриситет, директрисы, фокальные радиусы.

    контрольная работа, добавлен 20.04.2015

  • Понятие, виды корреляционной связи. Положительная, отрицательная и другие виды корреляций. Выбросы, задачи корреляционного анализа, установление направлений и форм связи между варьирующими признаками. Бисериальный и другие коэффициенты корреляции.

    реферат, добавлен 26.06.2017

  • Рассмотрение свойственных особенностей центрально-симметричных фигур. Исследование основ построения правильного многоугольника. Изучение букв латинского алфавита, имеющих центр симметрии. Характеристика основных аспектов преобразования плоскости.

    презентация, добавлен 09.03.2015

  • Размытие при воспроизведении изобразительной информации, описание с применением пространственно-спектральных методов. Использование важнейших характеристик линейных систем: функции передачи модуляции. Косинусоиды различных пространственных частот.

    лабораторная работа, добавлен 11.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.