Метод математической индукции

Суть метода математической индукции в решении задач на делимость, суммирование рядов, доказательства неравенств, исчислениям в геометрии, в теории чисел и алгебре. Теоремы разбиения треугольников и карта пересечения контуров окружностей на плоскости.

Подобные документы

  • Обоснование необходимости создания математического аппарата для анализа, обработки и обобщения статистического материала из разных областей. Структуры косвенного доказательства. Схемы доказательства "от противного" на языке математической логики.

    статья, добавлен 05.06.2018

  • Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.

    курсовая работа, добавлен 25.01.2017

  • Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.

    конспект урока, добавлен 03.02.2018

  • История возникновения и развития отрицательных чисел в математической науке, особенности их применения в торговых расчетах и физике, их основные функции. Решение арифметических задач с помощью отрицательных чисел, построение уравнений с одним неизвестным.

    презентация, добавлен 12.04.2016

  • Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.

    статья, добавлен 31.05.2013

  • Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.

    лекция, добавлен 18.10.2013

  • Рассмотрение тригонометрического отображения действительных чисел. На основании этого получение элементарного доказательства последней (великой) теоремы П. Ферма. Вывод тригонометрических выражений. Исследование геометрической интерпретации функции.

    статья, добавлен 26.06.2018

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Предмет и общие принципы математической статистики как раздела математики, посвященного математическим методам систематизации и обработки данных. Раскрытие содержания закона больших чисел как метода определения эмпирического среднего в конечной выборке.

    реферат, добавлен 07.07.2013

  • Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.

    презентация, добавлен 02.03.2014

  • Составные части графа. Использование теории графов при решении задач в экономике. Алгоритмы, предназначенные для выполнения задачи оптимизации. Понятие "жадный алгоритм", его свойства. Применение формул метода Дейкстры для решения экономических задач.

    статья, добавлен 20.04.2019

  • Открытие теоремы Пифагором. Легенда о заклании быков Пифагором. Некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Биография Пифагора. Древнекитайское, древнеиндийское, а также алгебраические доказательства теоремы.

    реферат, добавлен 14.12.2012

  • Рассмотрение центральной предельной теоремы. Характеристика неравенства Чебышева, изучение его доказательства. Определение особенностей закона больших чисел в форме Чебышева. Выявление значения теоремы Бернулли, Пуассона. Формулировка неравенства Маркова.

    реферат, добавлен 12.11.2015

  • Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.

    контрольная работа, добавлен 10.01.2012

  • Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.

    реферат, добавлен 12.09.2010

  • Основные понятия теории вероятности и математической статистики, классическое определение вероятности. Нахождение формального критерия сравнения дендроклиматологических рядов деревьев. Проверка гипотезы о влиянии климата на рост древесных колец.

    курсовая работа, добавлен 26.03.2019

  • Математические предложения и их доказательства в курсе геометрии основной школы. Индукция и дедукция как основные приемы обоснования математических предложений. Воспитание потребности в логическом доказательстве. Методика изучения конкретной теоремы.

    контрольная работа, добавлен 02.04.2016

  • Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.

    книга, добавлен 28.03.2013

  • Биография греческого ученого, происхождение теоремы Пифагора, способы ее доказательства разными народами (древнекитайский, индусский, Евклидом) и значение для современной геометрии. Особенности соотношения размера сторон треугольника и его гипотенузы.

    реферат, добавлен 21.01.2015

  • Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.

    курсовая работа, добавлен 30.07.2017

  • Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.

    курсовая работа, добавлен 12.02.2013

  • Исследование соотношения концепций понимания и доказательства в математической практике. Эпистемические требования при передоказательстве теоремы. Интерпретация вхождения семантического содержания в синтаксические структуры. Примёмы дедуктивного вывода.

    статья, добавлен 23.09.2020

  • Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.

    курсовая работа, добавлен 23.04.2014

  • Аксиомы полуплоскости и луча: их возможности в построении геометрии. Основная характеристика изучения проблемы Жордана. Особенность смежных и вертикальных углов. Изучение метода равных треугольников, как исторически первого геометрического способа.

    курсовая работа, добавлен 25.10.2015

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

    курсовая работа, добавлен 31.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.