Нейронные сети: алгоритм обратного распространения

Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.

Подобные документы

  • Нейронные сети как новая перспективная вычислительная технология для финансовой области. История и типы архитектур нейронных сетей. Обучение многослойной сети. Алгоритм обратного распространения ошибки. Способы обеспечения и ускорения сходимости.

    контрольная работа, добавлен 06.12.2015

  • Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.

    статья, добавлен 15.08.2020

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Разработка прогнозирующих систем: понятие прогноза и цели его использования, методы прогнозирования, модели временных последовательностей. Модели нейронных сетей: Маккалоха, Розенблата, Хопфилда. Нейронные сети и алгоритм обратного распространения.

    курсовая работа, добавлен 30.11.2009

  • Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.

    презентация, добавлен 16.10.2013

  • Характеристика, структура и задачи нейронных сетей. Направления и разработки нейрокомпьютинга. Искусственные нейронные сети, их черты и задачи. Алгоритм обучения перцептрона и его недостатки. Перечень возможных промышленных применений нейронных сетей.

    реферат, добавлен 20.02.2009

  • Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.

    дипломная работа, добавлен 14.12.2019

  • Понятие и основные компоненты нейронных сетей, классификация образов. Обучение по алгоритму обратного распространения ошибок. Сети с радиальными базисными функциями. Кластеризация образов, самоорганизующаяся карта признаков. Дискретная сеть Хопфилда.

    книга, добавлен 18.01.2011

  • Изучение способов поиска субоптимальных нейронных сетей. Архитектура системы поиска нейронной сети с помощью генетического алгоритма. Особенности работы операторов генетического алгоритма. Обучение нейронных сетей. Принципы стохастического моделирования.

    статья, добавлен 29.04.2017

  • Модели нейронных сетей относятся к интеллектуальным системам, они позволяют улучшить результаты благодаря самообучению. Рассмотрены исследования по моделированию прогнозов котировок ценных бумаг. Нейронные сети обратного распространения. Описание модели.

    статья, добавлен 17.03.2021

  • Изучение биологических аналогов изучаемых нейронных сетей. Разбор задачи воссоздания перцептрона. Принципы обучения нейронной сети. Моделирование программ, показывающих работу перцептрона. Синапс и алгоритм передачи информационного сигнала в сети.

    реферат, добавлен 22.03.2019

  • История развития нейронных сетей. Строение биологической нейронной сети. Искусственный нейрон. Общие положения и виды обучения нейронных сетей. Архитектура. Сети прямого распространения сигнала. Рекуррентные сети. Области практического применения.

    контрольная работа, добавлен 18.02.2018

  • Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.

    презентация, добавлен 16.10.2013

  • Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.

    курсовая работа, добавлен 25.01.2014

  • Свойства биологического нейрона. Алгоритм обратного распространения ошибки. Обучение с учителем. Виды нейронных сетей и их свойства и преимущество. Разработка системы тестирования. Выбор программных средств для разработки. Структура базы данных и системы.

    дипломная работа, добавлен 07.08.2018

  • Рассмотрение существующих методов для оценки надежности. Оценка надежности сети на основе нейронных сетей. Архитектура нейронной сети Кохонена. Реализация алгоритма и программы оценки надежности телекоммуникационных сетей с помощью нейронных сетей.

    диссертация, добавлен 24.05.2018

  • Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.

    курсовая работа, добавлен 04.12.2012

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Нейронные сети: особенности, варианты использования и преимущества. Диагностика и прогнозирование экономических объектов. Применение нейронных сетей в рыночной экономике. Варианты применения искусственных нейронных сетей в задачах бизнес-прогнозирования.

    реферат, добавлен 15.03.2009

  • История появления и развития нейронных сетей. Проведение их аналогии с мозгом человека. Сущность искусственной нейронной сети, ее программное или аппаратное воплощение. Особенности обучения нейронных сетей, их применение в современных развитых странах.

    реферат, добавлен 05.04.2017

  • Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.

    курсовая работа, добавлен 21.02.2016

  • Описание искусственных нейронных сетей. Типы машинного обучения. Анализ существующих библиотек. Разработка алгоритма распознавания дорожных знаков с применением глубоких сверточных сетей и дополнительного классификатора J48. Результаты обучения алгоритма.

    дипломная работа, добавлен 30.07.2016

  • Показано, что главное отличие нейронных сетей от ЭВМ в том, что они не программируются, а обучаются. Схема нейронной сети с прямой передачей сигнала. Рекуррентные нейронные сети как наиболее сложный вид нейронных сетей, в которых имеется обратная связь.

    статья, добавлен 26.04.2019

  • Архитектура искусственных нейронных сетей, особенности их обучения с учителем и без него. Правило коррекции по ошибке. Обучение методом соревнования. Основные принципы генетического алгоритма. Анализ применения нейронных сетей для синтеза регуляторов.

    дипломная работа, добавлен 23.02.2015

  • Рассмотрение средств и методов MatLab и пакета Simulink для моделирования и исследования нейронных сетей. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме. Применение GUI-интерфейса пакета нейронных сетей.

    методичка, добавлен 03.07.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.