Преобразования графиков функций

Написание координат концов новых полученных ломанных и сравнение их с исходными. Применение свойства периодичности любой тригонометрической функции, определение наименьшего положительного периода. Построение графика функции. Абсциссы и ординаты его точек.

Подобные документы

  • Графики элементарных функций, их непрерывность. Классификация точек разрыва. Кратко о Maple. Сущность первого и второго замечательных пределов. Сравнение бесконечно малых функций. Асимптотические формулы. Правило Лопиталя. Разложение в ряд Тейлора.

    учебное пособие, добавлен 11.10.2012

  • Геометрические и аффинные преобразования на плоскости. Применение однородных координат для матричной формы записи уравнений аффинных преобразований. Свойства и способы задания аффинного преобразования плоскости, которые переводят прямую в прямую.

    реферат, добавлен 08.04.2020

  • Определение предела последовательности и предела функций в математике. Бесконечно малые и большие функции и их свойства. Предел постоянной величины равен самой постоянной. Вычисление постоянного множителя. Непрерывность функций нескольких переменных.

    презентация, добавлен 02.04.2015

  • Сравнение бесконечно малых функций, их определение. Некоторые эквивалентные бесконечно малые функции при x>0. Раскрытие неопределенностей. Свойства функций, непрерывных на отрезке. Основные соотношения, их доказательство и примеры решений задач.

    презентация, добавлен 16.10.2014

  • Плотность распределения величины Y. Закон равномерной плотности на участке. Построение графика функции. Общий метод решения задачи для наиболее простого случая функции двух аргументов. Композиция законов распределения. Квадраты вероятных отклонений.

    лекция, добавлен 18.03.2014

  • Исследование геометрического закона распределения вероятностей дискретной случайной величины. Построение графиков зависимости математического ожидания от параметра распределения. Написание функции для определения коэффициентов эксцесса и асимметрии.

    лабораторная работа, добавлен 03.04.2014

  • Сущность функции одной независимой переменной. Основные свойства пределов. Характеристика правил и формул дифференцирования. Применение производных к исследованию функций. Свойства неопределенного интеграла и применение формулы Ньютона-Лейбница.

    методичка, добавлен 27.10.2013

  • Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.

    лекция, добавлен 26.01.2014

  • Понятие числовой функции. Определение числовой последовательности как числовой функции на множестве натуральных чисел. Исследование функций на четность и нечетность. Поиск нулей и промежутков, понятие метода интервалов. Промежутки возрастания функции.

    лекция, добавлен 27.04.2017

  • Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.

    контрольная работа, добавлен 23.01.2015

  • Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.

    контрольная работа, добавлен 03.06.2015

  • Определение топологического пространства, классическое определение непрерывности числовой функции. Отображения для любой пары произвольных множеств. Окрестностью точки в топологическом пространстве, предел последовательности точек, топология Зарисского.

    контрольная работа, добавлен 10.11.2010

  • Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.

    контрольная работа, добавлен 17.12.2013

  • Построение схематического графика показательной функции и определение ее основных свойств. Исследование математиками Н. Оресма и М. Штифелем дробных показателей степени и простых правил действий над степенями. Развитие теории логарифмов Дж. Непером.

    презентация, добавлен 05.03.2012

  • Определитель как одно из основных понятий линейной алгебры. Нахождение обратной матрицы. Коэффициенты при переменных и свободные членов. Методы Крамера и Гаусса. Отрезки, отсекаемые плоскостью на осях координат. Исследование функции и построение графика.

    контрольная работа, добавлен 08.10.2014

  • Определение элементарных функций. Область определения и значения функции. Основные простейшие элементарные функции: линейная, степенная, квадратичная, показательная, логарифмическая, тригонометрическая, oбратная тригонометрическая. Функция и её свойства.

    реферат, добавлен 30.10.2010

  • Построение математической модели управления и автоматизации технологических процессов в промышленности. Характеристика, структурная схема и свойства орграфов, использование формулы Мейсона для их преобразования. Определение передаточной функции контуров.

    лекция, добавлен 22.07.2015

  • Рассмотрение дробно-рациональной функции; построение ее графика. Альтернативные методы построения графиком y=1/x. Ознакомление с методом неопределенных коэффициентов. Изучение правил интегрирования правильной и неправильной дробно-рациональной функций.

    курсовая работа, добавлен 28.12.2018

  • Подходы к определению понятия "функция", графики функции. Изучение основных элементарных функций в школьном курсе математики: линейной, квадратичной, кубической, обратной пропорциональности, степенной, показательной, логарифмической и тригонометрической.

    курсовая работа, добавлен 01.03.2013

  • Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.

    дипломная работа, добавлен 29.10.2010

  • Определение гамма-функцией и бета-функцией эйлеровых интегралов первого и второго рода. Основное функциональное уравнение гамма-функции. Связь межу бета и гамма-функциями Эйлера. Построение графика модуля гамма-функции на комплексной плоскости.

    курсовая работа, добавлен 04.11.2016

  • Поиск экстремума функции одной и нескольких переменных. Интерполяция функций интерполяционными полиномами, способы их вычисления и анализ сходимости (по классическому примеру Рунге). Определение ошибки интерполяции. Построение графиков полиномов Чебышева.

    презентация, добавлен 21.09.2013

  • Свойства и методы вычисления пределов функций одной переменной. Исследование свойств функций, непрерывных в точке и на интервале, их корни и промежуточные значения, точки разрывов и их классификация. Использование метода сечений при построении графика.

    эссе, добавлен 28.07.2013

  • Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.

    курсовая работа, добавлен 17.03.2014

  • Применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Свойства преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.

    статья, добавлен 02.03.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.