Построение решений систем линейных уравнений
Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.
Подобные документы
Определение, расчет и совместность системы линейных уравнений. Варианты решений фундаментальной системы уравнений и вычисление рангов матрицы. Модифицированная матрица и вычетание уравнений из строк. Определение произвольный системы, отличный от нуля.
контрольная работа, добавлен 21.11.2012Анализ составления матрицы В, состоящей из свободных членов. Приведение к алгебраическому преобразованию, чтобы главная диагональ была равна единице с помощью метода Гаусса. Особенность создания матрицы M, состоящей из коэффициентов при неизвестных.
отчет по практике, добавлен 03.05.2020Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.
курсовая работа, добавлен 23.04.2011Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.
контрольная работа, добавлен 25.04.2017Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.
контрольная работа, добавлен 25.03.2014Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.
лекция, добавлен 26.03.2012Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
задача, добавлен 28.10.2017Фундаментальная система решений и общее решение однородной системы уравнения. Система n линейных уравнений с n неизвестными. Правило Крамера. Однородная система n линейных уравнений, с n неизвестными. Метод Гаусса. Матричный вид системы уравнений.
контрольная работа, добавлен 06.08.2013Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
курсовая работа, добавлен 17.03.2017Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.
курсовая работа, добавлен 17.11.2019- 87. Алгебра матриц
Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.
методичка, добавлен 19.09.2015 Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
учебное пособие, добавлен 06.09.2017- 89. Метод Гаусса
Рассмотрение системы уравнений как условия, состоящего в одновременном выполнении нескольких уравнений относительно нескольких переменных. Установление обусловленности матрицы. Изучение методов интегрирования Ньютона-Котеса. Обзор метода прямоугольников.
доклад, добавлен 24.01.2016 Определение общего содержания и описание элементарного доказательства Великой теоремы Ферма с использованием малой теоремы Ферма и метода клонирования уравнений. Доказательство справедливости Великой теоремы Ферма для разных значений показателя степени.
задача, добавлен 18.05.2012Матричная форма записи алгебраических операций. Совместные и несовместные системы линейных уравнений. Решение задач матричным методом. Исследование однородной системы методом Гаусса. Вычисление определителя матрицы. Особенности линейных преобразований.
контрольная работа, добавлен 31.01.2014Технология решений систем линейных алгебраических уравнений в интегрированной среде MathCad. Определение решения системы методом простой итерацией и матричным методом. Значение коэффициентов при неизвестных. Математическая палитра интегрированной среды.
лабораторная работа, добавлен 16.05.2015Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Методы получения функционального уравнения для доказательства великой теоремы Ферма. Исследование матрицы распределения составных чисел в ряду натуральных числовых значений. Составление системы уравнений для нахождения показателей пифагоровых троек.
учебное пособие, добавлен 30.03.2017Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014Решение системы алгебраических уравнений матричным способом и методом Гаусса. Определение собственных чисел и собственных векторов матрицы. Возведение комплексного числа в степень. Определение наибольшего и наименьшего значений функции на отрезке.
контрольная работа, добавлен 26.12.2021Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Раскрытие сущности алгоритма по перечислению гиперкомплексных числовых систем методом линейных преобразований. Определение понятия канонической и неканонической числовых систем. Сферы применения полученных неканонических гиперкомплексных числовых систем.
статья, добавлен 29.01.2019Определение уравнения плоскости, проходящей через точку перпендикулярно вектору. Решение системы линейных уравнений по формулам Крамера, матричным способом и методом Гаусса. Решение задач линейного программирования модифицированным симплексным методом.
контрольная работа, добавлен 11.03.2012