Математическая логика и теория алгоритмов

Основные разделы исчисления высказываний: понятие выводимости, естественного вывода, отношения эквивалентности. Использование аксиоматического метода в построении математических теорий. Полное изложение исчисления высказываний. Понятие выводимости.

Подобные документы

  • Исчисление высказываний. Свободные и связанные переменные. Дизъюнкты и нормальные формы. Анализ примеров использования метода резолюций в логике высказываний. Непротиворечивость аксиом. Аксиоматизация логики высказываний. Применение логических связок.

    учебное пособие, добавлен 12.11.2017

  • Аксиоматический метод в математике. Конъюнктивная и дизъюнктивная нормальные формы. Построение исчисления высказываний в виде формальной системы. Формализация математических теорий на языке первого порядка. Теорема о полноте. Алгоритмы и машина Тьюринга.

    учебное пособие, добавлен 07.08.2013

  • Определение понятия высказывания. Изучение логических операций и их таблиц истинности. Описание формул логики высказываний, а также их равносильности. Анализ заколов логики высказываний. Описание аксиоматического метода. Примеры решения логических задач.

    реферат, добавлен 28.11.2016

  • История аксиоматического метода построения научных теорий, его использование при создании неевклидовых геометрий. Особенности эллиптической геометрии Римана. Новый взгляд ученых Н.И. Лобачевского, К.Ф. Гаусса, Я. Бойяи на геометрию; оценка открытия.

    статья, добавлен 26.04.2019

  • Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.

    реферат, добавлен 12.04.2015

  • Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.

    курсовая работа, добавлен 05.12.2019

  • Понятие элементарной суммы и произведения. Множество дизъюнктивных и конъюнктивных нормальных форм для алгебры высказываний. Тождественно-истинная и тождественно-ложная формула. Проблема разрешимости для логики высказываний. Формализация рассуждений.

    презентация, добавлен 17.04.2013

  • Принципы построения формальных теорий. Проблемы, связанные с системой аксиом. Доказательство независимости системы аксиом. Исчисление высказываний, символы и формулы. Теорема дедукции и правило силлогизма (транзитивный вывод). Примеры решения задач.

    презентация, добавлен 17.04.2013

  • Предмет математической логики. Калькуляция высказываний высказывание. Сущность эквивалентности конъюнкции. Алгебра логических значений. Выражение логической операции с помощью отрицания и импликации. Применение булевой алгебры в математической логике.

    реферат, добавлен 18.09.2012

  • Начало аксиоматической теории высказываний: первоначальные понятия, система аксиом, правило вывода. Общая характеристика вывода и его свойства. Теорема о дедукции и следствия из нее, сферы практического применения. Основные производные данного правила.

    лекция, добавлен 07.12.2014

  • Понятие и предмет математической логики. Задача математизации формальной логики Лейбница. Получение правильного вывода в логической схеме. Калькуляция высказываний и предикатов при которых с заменой переменных на высказывания, получаются верные выводы.

    реферат, добавлен 03.12.2014

  • Сущность принципа резолюций в логике высказываний. Доказательства невыполнимости, основанные на данном принципе. Правила и примеры использования метода доказательства теорем через поиск противоречий. Стратегии решении задач в алгебре предикатов.

    курсовая работа, добавлен 06.02.2014

  • Принцип резолюций в логике высказываний. Доказательства невыполнимости, основанные на принципе резолюций. Приложения и примеры использования метода резолюций. Метод резолюций в логике предикатов. Стратегии и примеры использования метода резолюций.

    курсовая работа, добавлен 04.02.2014

  • Математическая постановка задач оптимального управления. Понятие функционала, его свойства и виды: Лагранжа, Майера, Больца. Понятие оптимальной ширины полосы пропускания системы. Основы вариационного исчисления. Условия относительного экстремума.

    курс лекций, добавлен 19.09.2017

  • Предмет математической логики. Недостатки формальной логики. Сущность понятия "высказывание". Сущность отрицания, конъюнкции. Алгебра логических значений. Главные особенности импликации. Эквивалентность как вид выражения операции. Блок управления памятью.

    реферат, добавлен 21.10.2012

  • Определение тождественно-истинного и тождественно-ложного предикатов. Основные операции логики высказываний. Построение языка логики первого порядка, значение используемых в ней символов. Аксиоматика и доказательство формул. Понятие формальной системы.

    лекция, добавлен 07.08.2013

  • Доказательство разрешимости отношений эквивалентности вычислительных моделей. Детерминированные конечные автоматы Рабина и Скотта. Новый подход при построении алгоритмов разрешения отношений эквивалентности. Однородные логические графы в математике.

    статья, добавлен 22.08.2020

  • Знакомство с основными этапами логического вывода в общем виде. Оценка эффективности алгоритмов нечетких вычислений как основная функция разрабатываемой информационной системы. Анализ математических моделей используемых алгоритмов нечеткого вывода.

    статья, добавлен 25.07.2018

  • Сущность бесконечнозначной предикатной логики, имеющей связку (нечеткое неравенство), близкой к импликации Лукасевича. Анализ ряда свойств секвенциального исчисления, в том числе свойств, служащих основой для процедур автоматического поиска доказательств.

    статья, добавлен 17.01.2018

  • Характеристика основ нечёткой и модальной логики. Знакомство с примерами экспертных систем. Место математической логики в информационных технологиях и программировании. Рассмотрение правил записи сложных формул. Особенности метода дедуктивного вывода.

    книга, добавлен 07.08.2013

  • Характеристика доказательства по заданному модусу путем построения диаграмм Эйлера. Изучение методов математической логики для формализации высказывания. Доказательство общезначимости формулы, используя законы алгебры, равносильные преобразования.

    контрольная работа, добавлен 05.09.2016

  • Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.

    реферат, добавлен 07.11.2015

  • Доказательство теоремы, позволяющей решить проблему разрешимости (выполнимости) для формул исчисления высказываний, содержащих предикаты, зависящие от одного переменного. Представление равносильности в виде тождественно истинной формулы для любого поля.

    контрольная работа, добавлен 05.11.2017

  • Постановка задачи и построение модели алгоритма, описание и доказательство его правильности. Описание переменных программы и расчет вычислительной сложности. Использование одномерного массива размерности, совпадение начального и конечного результата.

    реферат, добавлен 30.10.2010

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.