Обратная матрица – применение
Матрица как прямоугольная таблица, которая составлена из чисел. Общая характеристика основных свойств обратной матрицы, анализ способов нахождения. Рассмотрение проблем выбора начального приближения. Знакомство с особенностями метода Гаусса-Жордана.
Подобные документы
Определение типа матриц, для которого обратная матрица тот же тип. Анализ условий, обеспечивающих невырожденность матрицы. Исследование матриц третьего порядка. Определение характеристик полей, над которыми существуют обратные матрицы исследуемых типов.
статья, добавлен 30.07.2017Порядок выполнения действий с матрицами: сложение (вычитание), транспонирование матриц, их умножение. Действия с матрицами третьего порядка. Понятие обратной матрицы, ее обозначение и пример нахождения, последовательность действий при решении задачи.
лекция, добавлен 11.10.2012Главная задача численных методов. Система Линейных Алгебраических Уравнений (СЛАУ), их проблематика. Методы решения поставленных задач. Порядок обращения матриц. Число обусловленности, описание метода Гаусса. Обзор программного модуля для Турбо Паскаль.
курсовая работа, добавлен 21.12.2012- 29. Решение матриц
Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.
контрольная работа, добавлен 11.04.2009 Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.
курсовая работа, добавлен 31.10.2017Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.
контрольная работа, добавлен 27.11.2015Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.
доклад, добавлен 11.12.2017Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.
контрольная работа, добавлен 12.10.2016Декомпозиция при моделировании в электроэнергетике. Структура электроэнергетики Украины. Элементы теории матриц. Определители и их свойства. Обратная матрица. Алгоритм сканирования. Обращение матрицы методом разбиения на блоки. Формулы Фробениуса.
курс лекций, добавлен 18.08.2013Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Определение понятий матрицы и ранга матрицы, а также описание алгоритма Гаусса. Анализ сути метода окаймляющих миноров. Характеристика алгоритма и пример вычисления ранга матрицы методом окаймляющих миноров. Анализ вычислительной сложности алгоритма.
курсовая работа, добавлен 17.03.2017Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений
реферат, добавлен 26.02.2010Общая характеристика теоремы Больцеана-Коши. Знакомство с особенностями метода равномерного поиска и метода бисекции. Анализ основных проблем поиска интервалов, содержащих корень, с заданной степенью точности. Рассмотрение способов локализации отрезков.
лабораторная работа, добавлен 02.10.2013Анализ составления матрицы В, состоящей из свободных членов. Приведение к алгебраическому преобразованию, чтобы главная диагональ была равна единице с помощью метода Гаусса. Особенность создания матрицы M, состоящей из коэффициентов при неизвестных.
отчет по практике, добавлен 03.05.2020- 40. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.
лекция, добавлен 09.09.2017Понятие сингулярных чисел, проблема нахождения их собственных значений. Вычисление сингулярного разложения матрицы с использованием метода вращений Якоби. Разработка и тестирование на примерах программы для вычисления сингулярного разложения матриц.
лабораторная работа, добавлен 23.11.2014- 43. Метод Гаусса
Рассмотрение системы уравнений как условия, состоящего в одновременном выполнении нескольких уравнений относительно нескольких переменных. Установление обусловленности матрицы. Изучение методов интегрирования Ньютона-Котеса. Обзор метода прямоугольников.
доклад, добавлен 24.01.2016 - 44. Ранг матрицы
Определение понятия "ранг матрицы". Сущность элементарных преобразований матрицы. Алгоритм нахождения ранга матрицы. Характеристика процесса транспонирования матрицы. Способы и примеры вычисления ранга матрицы с помощью элементарных преобразований.
презентация, добавлен 28.09.2015 Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Нахождение обратной матрицы с помощью метода жордановых исключений. Постановка задачи линейного программирования. Нахождение оптимального опорного плана. Определение двойственной задачи к общей задаче линейного программирования. Описание метода Штифеля.
учебное пособие, добавлен 12.05.2015Равенство матриц и их транспонирование. Правила сложения матриц. Умножение матрицы на число. Свойство определителя. Способы вычисления определителей. Ранг матрицы. Элементарные преобразования матрицы. Вычисление обратной матрицы высокого порядка.
контрольная работа, добавлен 06.12.2011Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.
курсовая работа, добавлен 30.03.2015- 49. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
контрольная работа, добавлен 09.07.2015