Андрей Николаевич Колмогоров

История жизни выдающегося советского математика А.Н. Колмогорова - основоположника современной теории вероятностей. Выбор профессии, обучение в университете и пути к вершинам науки. Вклад в развитие математики. Мнения о его трудах других известных ученых.

Подобные документы

  • Модель теоретико-числовой подготовки бакалавра педагогического образования, разработанной в Южном федеральном университете, реализующей многочисленные интеграционные связи теории чисел. Повышение профессиональной подготовки будущего учителя математики.

    статья, добавлен 20.04.2018

  • Исследовано, что в математике название парадокса применяется, когда из кажущихся верными посылок получаются противоречия, что доказывает ложность посылок. Рассмотрено несколько наиболее интересных парадоксов теории вероятностей, приведены примеры.

    статья, добавлен 25.02.2019

  • Обзор взаимодействия зарядов при их относительном движении, течения в вихревой камере, осесимметричных взаимодействий N-тел на плоскости, многослойных вращающихся структур N-тел. Недостатки современной математики, препятствующие публикации решений задач.

    статья, добавлен 26.10.2018

  • Основные направления развития математики в XX веке: топология, риманова геометрия, теория вероятности. Новые области применения математики в связи с развитием компьютерных технологий. Использование сведений о развитии математики в начальной школе.

    курсовая работа, добавлен 20.09.2018

  • Построение комбинаторной теории Лейбницем. Использование ее при решении задач алгебры, геометрии. Интеграция комбинаторики в современную математику. Правила суммы и умножения. Описание урновой схемы как одной из простейших моделей теории вероятностей.

    контрольная работа, добавлен 17.06.2014

  • Изучение необходимости применения математической науки в жизни человека. Основные правила в геометрии стрижек. Математика в парикмахерском деле. Выбор бигуди в зависимости от толщины радиуса для моделирования прически. Симметрия и асимметрия в стрижках.

    презентация, добавлен 23.01.2014

  • Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.

    контрольная работа, добавлен 01.08.2017

  • Рассмотрение математики в античной Греции. Построение греками математики как целостной науки с собственной методологией, основанной на чётко сформулированных законах логики. Провозглашение о постижимости законов природы для человеческого разума.

    реферат, добавлен 21.03.2012

  • Эволюция и применение математики в современной науке и технике. Математические начала натуральной философии. Значение трудов Декарта, Ньютона и Галилея. Открытие математических, логических и физических закономерностей. Математика и теория множеств.

    контрольная работа, добавлен 23.03.2010

  • Зарождение арифметики и элементарной математики, развитие строительных технологий и геометрии. Создание дифференциального, интегрального исчисления. Изучение основных законов механики. Открытия Пифагора и Ньютона. Развитие математики в современный период.

    статья, добавлен 20.07.2018

  • Роль математики в современной науке. Построенная Ньютоном модель механического движения как самый важный источник математического анализа, изучающего производную и ее свойства. Потребность развития математической науки и ее практических применений.

    статья, добавлен 09.04.2019

  • Жизненный и творческий путь одного из известных историков математики, доктора физико-математических наук, профессора Константина Алексеевича Рыбникова, научные интересы которого были посвящены истории математики, логике и комбинаторному анализу.

    статья, добавлен 30.07.2016

  • Периоды развития математики в Китае. Развитие математики в Китае в рамках условной периодизации, предложенной Ли Янем. Древнее математическое "Десятикнижье": сочинение Лю Хуэя по практической геометрии, метрологический трактат Сунь-цзы, математика Китая.

    реферат, добавлен 05.11.2017

  • Особенности и закономерности применения теории вероятностей в различных сферах общественной жизни. Этапы ее развития и специфика использования в профессиональной деятельности. Конкретные примеры применения данной теории в экономике и менеджменте.

    статья, добавлен 20.01.2022

  • Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.

    книга, добавлен 06.05.2013

  • Теория вероятностей как математическая наука, позволяющая по вероятностям одних случайных событий находить возможность появления других, связанных каким-либо образом с первыми. Периодизация истории науки и ее применения в естествознании и технике.

    контрольная работа, добавлен 20.11.2013

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Анализ работ А.Н. Колмогорова и Н.В. Смирнова, посвященных односторонним и двухсторонним критериям согласия и однородности. Рассмотрение типовых ошибок при применении перечисленных критериев для проверки нормальности распределения результатов измерений.

    статья, добавлен 14.05.2017

  • Архимед и его роль в развитии математики. Мудрые повествования о древнегреческом математике Диофанте из Александрии. Мифологизация и реальность в биографии выдающегося математика древности Пифагора. Способ определения высоты пирамиды по Фалесу.

    презентация, добавлен 02.10.2014

  • Математика как наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчета, измерения и описания формы объектов, знакомство с историей возникновения. Анализ роли математики в жизни человека. Особенности точных наук.

    реферат, добавлен 07.12.2021

  • Биографические сведения из жизни М. Остроградского, развитие математических способностей ученого, его обучение в университете. Научная и педагогическая деятельность в заведениях Петербурга. Факты из личной жизни М. Остроградского, смерть ученого.

    доклад, добавлен 15.12.2014

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Введение в теорию множеств. Задачи, связанные с операциями над конечными множествами. Декартово произведение множеств. Основные элементарные функции. Понятия и величины дискретной математики. Элементы теории вероятностей и математической статистики.

    лекция, добавлен 07.05.2014

  • Математика – наука о количественных отношениях и пространственных формах действительного мира. Исторические этапы ее развития. Взгляды на математику выдающегося деятеля прошлого и настоящего Н. Лобачевского. Биография создателя неевклидовой геометрии.

    реферат, добавлен 03.12.2013

  • Биографический очерк о жизни, научной, педагогической и общественной деятельности российского математика И.Г. Петровского, автора современной теории дифференциальных уравнений. Анализ основных направлений его исследований в области математики и механики.

    реферат, добавлен 19.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.