Исследование алгоритмов распознания символов. Моделирование нейронной сети
Описание существующих видов нейронных сетей. Выявление их достоинств и недостатков. Основные возможности программного продукта Matlab. Моделирование и обучение нейронной сети на основе созданных дескрипторов для каждого символа английского алфавита.
Подобные документы
Изучение работы перцептрона для решения задачи распознавания символов. Выбор и обоснование структуры нейронной сети. Возможность улучшения свойств обобщения путем наращивания ее структуры. Анализ работы перцептрона при распознавании двух, четырех букв.
статья, добавлен 14.07.2016Основные направления развития систем искусственного интеллекта. Математическая модель, программное и аппаратное воплощение искусственной нейронной сети. Выявление сложных зависимостей между входными и выходными данными и выполнение их обобщения.
статья, добавлен 25.03.2019Кредитные отношения как один из наиболее важных аспектов современной экономической деятельности. Основные проблемы экономики, решаемые посредством технологий интеллектуального анализа данных. Теоретическое обоснование нейросетевого моделирования.
курсовая работа, добавлен 14.07.2016Анализ существующих методов решения задачи распознавания человеческих лиц. Обнаружение местоположения лица на изображении методом цветового сегментирования. Моделирование процесса обучения искусственной нейронной сети на языке программирования C++.
дипломная работа, добавлен 24.05.2018Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.
курсовая работа, добавлен 25.01.2014Предложение по решению задачи индексирования больших массивов информации. Особенности применения нейронной сети для точного ранжирования документов, имеющих шанс оказаться на высоких местах в выдаче по результатам более грубой оценки их релевантности.
статья, добавлен 26.04.2017Разработка программы распознавания действий человека. Работа с видеопотоком и классификатором. Выделение особенностей и структуры сверточной нейронной сети. Функции активации искусственного нейрона. Выделение контура из изображения и определение движения.
дипломная работа, добавлен 05.11.2015Искусственная нейронная сеть, обеспечивающая последовательное выделение окрашенных гауссовых сигналов из смеси. Правило обучения каскадной нейронной сети, основанное на критерии минимума среднего квадрата ошибки предсказания, упрощающее реализацию сети.
статья, добавлен 22.07.2013Современные методы оценки, применяемые в автоматизированных обучающих системах. Архитектура нечеткой нейронной сети Кохонена, алгоритм обучения. Принцип оценки обучаемого инженера на базе нечеткой нейронной сети Кохонена. Реализация разработанного метода.
статья, добавлен 19.01.2018Проблемы и возможности прогноза курса валют. Анализ финансовых временных рядов. Разработка искусственного интеллекта в виде нейронной сети для предсказания курса валют с гибкой настройкой. Архитектура, структура и компоненты программного приложения.
дипломная работа, добавлен 07.08.2018Прогноз популярности на основе признаков настроения и содержания видео. Способ прогнозирования популярности на основе сверточной сети с долгосрочной памятью. Предсказание славы видеоконтента на основе статистики видеоконтента c помощью нейронной сети.
дипломная работа, добавлен 19.08.2020Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Алгоритм функционирования нейронных сетей, их внутренняя структура и компоненты, а также критерии оценки качества. Максимизация взаимной информации двух выходов, получающих информацию от двух смежных, не пересекающихся областей одного изображения.
курсовая работа, добавлен 09.01.2018Выявление возможности использования нейронной активности мозга в качестве источника случайной величины для аппаратно-программного генератора случайных чисел. Использование электроэнцефалограммы головного мозга в качестве источника случайной величины.
статья, добавлен 03.05.2019Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.
контрольная работа, добавлен 27.11.2014Топологическая модель быстрой нейронной сети. Применение гибридных быстрого дискретного вейвлет-преобразования для построения систем классификации сигналов. Структурный синтез быстрых нейронных сетей. Модели и концепции эволюционной кибернетики.
статья, добавлен 29.05.2017Моделирование локально-вычислительных сетей на OPNETModeler 14.0. Сравнительный анализ производительности сети до и после расширения. Разработка методики для проведения статистических исследований в модели для маршрутизатора, коммутатора, пользователей.
статья, добавлен 20.01.2018Определение сущности фьючерсного контракта. Рассмотрение сравнительного анализа модели искусственной нейронной сети и регрессионных моделей. Ознакомление с процессом выбора программного обеспечения. Исследование временных рядов биржевых индексов.
дипломная работа, добавлен 30.08.2016Изучение механизмов функционирования отдельных нейронов и их наиболее важного взаимодействия, для познания процессов поиска, передачи и обработки информации, происходящей в нейронной сети. Синапс как структура и функциональный узел между двумя нейронами.
статья, добавлен 09.06.2021Исследование концепции моделирования активно-адаптивных сетей. Аналитический обзор стендов для исследования сетей Smart Grid. Обзор архитектуры комплекса полунатурного моделирования локальной активно-адаптивной сети. Система управления базой Citadel.
дипломная работа, добавлен 02.10.2013Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Рассмотрение принципов работы нейронной сети. Разработка алгоритма машинного обучения. История возникновения нейронных сетей. Последовательность интеллектуальной обработки информации в интернете. Примеры применения нейросетей в различных сферах.
статья, добавлен 01.03.2019Анализ предметной области. Технологии классификации текстовых данных. Диаграмма прецедентов системы определения категорий тендеров. Проектирование архитектуры системы определения категорий тендеров. Формирование обучающих выборок для нейронной сети.
дипломная работа, добавлен 28.11.2019Создание баз с неопределенными твитами и твитами с рекламой. Реализация и обучение свёрточной нейронной сети, методы классификации текстов по их тональности. Используемый функционал на языке программирования Python, реализация и обучение Word2Vec.
дипломная работа, добавлен 28.10.2019