Методы решения различных уравнений с параметрами
Уравнение с параметрами как математическое уравнение, внешний вид и решение которого зависит от значений одного или нескольких параметров. Алгоритм решения уравнения с параметром. Задачи с линейным, квадратным, дробно–рациональным уравнением с ответами.
Подобные документы
Определение иррациональных уравнений и их математические модели. Измерение отрезков в неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Равносильные уравнения и их следствия. Методы решения иррациональных уравнений.
реферат, добавлен 29.10.2010Доказательство существования регулярного решения уравнения синус-Гордона на всей плоскости. Аналитическое решение уравнения и сетевой угол чебышевской сети на псевдосфере. Геометрическая интерпретация решений уравнения, понятие асимптотической полосы.
контрольная работа, добавлен 08.12.2013Уравнение с оператором Лаврентьева-Бицадзе с двумя линиями изменения типа. Краевые задачи (задачи Трикоми, Дирихле и другие) для уравнений смешанного типа с одной или несколькими линиями изменения типа. Пример решения задачи, критерий единственности.
статья, добавлен 17.07.2018- 104. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.
дипломная работа, добавлен 27.02.2020 Возникновение математических моделей в виде автономных систем обыкновенных дифференциальных уравнений, зависящих от параметров в задачах естествознания. Зависимость скорости изменений некоторых величин, называемых фазовыми, или динамическими переменными.
статья, добавлен 25.12.2017Точные методы решения систем линейных алгебраических уравнений. Классификация погрешностей, возникающих при решении системы линейных алгебраических уравнений. Метод А.М. Данилевского нахождения канонической формы Фробениуса. Итерационный метод вращений.
курсовая работа, добавлен 11.03.2014Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
контрольная работа, добавлен 02.12.2012Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.
контрольная работа, добавлен 12.12.2012Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.
контрольная работа, добавлен 04.12.2014Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.
реферат, добавлен 02.02.2022Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
учебное пособие, добавлен 24.10.2012Новый метод решения уравнения Пелля и связанных с ним диофантовых уравнений. Примеры применения метода и сравнение по эффективности с циклическим методом. Использование фиксированного алгоритма циклического метода. Увеличение числа шагов цикла.
статья, добавлен 22.11.2018Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.
статья, добавлен 29.04.2021Изучение личности Диофанта и принципов решения диофантовых уравнений. Рассмотрение системы чисел и символов, которые Диофант применял в своих трудах, примеров из сборника его задач, имеющих решение. Решение неопределенных уравнений в рациональных числах.
реферат, добавлен 26.03.2019Решение обратной задачи гравиметрии как актуальна задача в современных условиях. Особенности интегрального уравнения Фредгольма первого рода, которое является некорректной задачей. Основные математические аспекты решения двумерной задачи гравиметрии.
статья, добавлен 30.01.2017Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.
курсовая работа, добавлен 14.03.2015Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.
реферат, добавлен 16.03.2012Вид уравнения Риккати при произвольном дробно-линейном математическом преобразовании зависимой переменной. Свойства отражающей функции, ее построение для нелинейных дифференциальных уравнений первого порядка. Формулировка и доказательства леммы для нее.
курсовая работа, добавлен 11.04.2014Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Понятие о комплексном решении однородного линейного дифференциального уравнения. Решение задачи для линейного неоднородного дифференциального уравнения с постоянными коэффициентами с правой частью имеющей вид полинома и в случае различных корней.
контрольная работа, добавлен 04.12.2014Характеристика особенностей уравнений с параметрами. Ознакомление со способами нахождения абсциссы и построения "склеенных" гипербол. Анализ методов выделения в уравнении полных квадратов и разложения его на множители. Изучение неравенств с параметрами.
контрольная работа, добавлен 29.05.2017Обыкновенное дифференциальное уравнение первого порядка, его решение. Геометрическое истолкование дифференциального уравнения. Теорема существования и единственности. Характер поведения интегральных линий системы уравнений в окрестности особой точки.
курс лекций, добавлен 28.10.2012